DHCAL Track Segment Analysis

IPP/McGill University

DHCAL Team

DAAD

Progress Report

22 June 2016

Digital Hadronic Calorimeter (DHCAL)

1 m³ prototype built at Argonne

Based on **Resistive Plate Chamber** (RPC) technology: 2 thin glass plates, 1.15 mm gas gap, readout boards.

Special configuration available: Min-DHCAL = Minimal Absorber DHCAL: the normal absorber plates were removed. with 0.4 X_0 or 0.04 λ_0 per layer

up to 52 layers:

× 3 RPCs per layer
× 2 boards per RPC
× 24 chips per board
× 64 channels per chip
1536 pads

= 460,800 1×1 cm² readout channels

Each layer is a **cassette** containing:

spaced every 25.4 mm

Absorber: 38 x 1.75 cm steel 8 x 2.00 cm steel 6 x 10.0 cm steel ^{tail}

Material: ~1.2 X_0 or 0.12 λ_0 per layer

Data Format

6084680 -1 0 -1	
6084661 52 73 36	
6084661 52 73 34	
6084661 52 73 37	
6084661 53 73 35	
6084661 52 73 35	
6084661 52 73 30	
6084661 52 72 30	
6084661 53 73 33	
6084661 52 73 33	
6084661 52 72 33	
6084661 53 73 32	
(004((1 53 71 5	
0084001 52 /1 5	
6084661 52 70 5	
6084661 52 70 3	
6084661 52 70 4	
6084661 52 70 2	
6084661 53 70 2	
0084001 52 70 0	
6084661 52 70 1	
0084001 53 74 41	
6084661 52 74 38	
6084661 53 74 40	
6084661 52 74 40	
6084661 53 74 39	
6084661 52 74 39	
6084661 53 75 42	
6084661 53 74 42	
6084661 52 75 44	
6084661 52 75 45	
0084061 53 75 46	
6084661 52 75 46	
0084001 53 76 48	
6084661 53 77 50	muon event
6084661 53 76 50	

Format is deceptively simple:

header line

hit lines ...

Hit lines:

time, x, y, z,

time in units of 100 ns coordinates of cell which fired

x = horizontal [0-95]y = vertical [0-95]z = beam direction [0-51]

Progress Report 2016.06.22 **DHCAL Track Segment Analysis** F.Corriveau IPP/McGill University

2D Clustering - 40 GeV Pion - z-layer 10

3D Clustering - 40 GeV Pion - z-layer 10

Apply Clustering to Beam Muons

5 muons	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 11 11	
number of hit cells	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 12 2 11 2 1 1 1	1 1 2 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
features:	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 1 1 1 1	22 22 22 12 12 1
missing layer	1 2 1 1 1212 11 1 2 1 2 1 1	1 2 1	
individual cells not firing	112 11 112 11 111 1 112 22 111 21 111 21 111 21	1 1 1 1 1	11 2 1 1 1 1 1 1
use this to calculate efficiencies (ε) and multiplicities (μ)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2 21 21 1 1 1 1 1	1 11 11 11 1 1 1 1 1 1 1
calibration = $\epsilon \times \mu$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 11 1 2 1 1 1	11 11 1 1 1 1 1 1 1 1 1 1 1
y z	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 2	2 2 11 1

Muons - Spatial Distributions of Hits

_F.Corriveau IPP/McGill University – Progress Report – 2016.06.22 – DHCAL Track Segment Analysis

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$ 8 8 8 8 88

Muons - #Clusters vs z

z-layer

Muon Clusters

Examples of 2 muon events:

Clusters	#	Hits	Cells	×	У	Z	zl	z2
CLP CLP CLP CLP CLP CLP	1 2 3 4 5	24 35 4 1 2	24 35 4 1 2	52.04 52.20 52.25 53.00 53.00	70.58 72.77 75.00 76.00 76.50	7.75 31.40 45.25 48.00 50.00	0 19 44 48 50	17 42 46 48 50
CLP	5	66	 66					
CLP CLP CLP CLP CLP CLP CLP	1 2 3 4 5 6	36 4 1 37 1 7	36 4 1 37 1 7	76.19 75.50 79.00 77.81 80.00 80.29	86.39 71.50 82.00 86.97 87.00 87.71	10.39 12.00 17.00 32.27 19.00 49.29	0 12 17 19 19 48	17 12 17 46 19 51
CLP	6	86	86					

Event 1: all clusters can be aligned and merged together according to z-ranges

Event 2: cluster #2 and #5 are odd particles not matching a track and are automatically rejected by clustering algorithm

Muons - Number of 2d Clusters per Event

52 z-layers: peak at ~50 per event

Muons - Hits per 3d Segment

	before cluster merging
۸	

Muons - Number of Hits per Event

peak at ~85

Muons - Reduced χ^2 from Track Fit

Simple 3d linear fit through the hits

 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx		
	1	will be later done with inertial tensor
	0.43	

Efficiencies and Multiplicities

Efficiencies ~95%

Efficiencies and Multiplicities

Efficiencies ~94%

Efficiencies and Multiplicities

Efficiencies ~93%

11 1 23342 11 21 131 2136212 1323 337542 132 1367724122 23555BA853211 138787BF666 11 211 1 2 12131153A7841 33 1 2232434779453 41 1 1 2 432234965512 131 2 2143 362322 253633 23551 2413421133 4644411 1413 1 2 56431 2222 1 255541 43333 12132 1 1 2 143 2341 211 3 1 1 1 1 3 336411 1 11 15642 1 22 2 11134 224421 1231 222 1 1 11 21 12 11 1 21 1311131 У 122 22 21 1 Track segments to be isolated and used for calibration

120 GeV Pion

Ζ

120 GeV Pion

18

Ζ

Status

Calorimeter calibration is being studied for particle shower track segments with DHCAL.

Connectivity used to isolate and define segments.

Method is first applied to muons.

Calibration works for them and sets a reference.

Method is next applied to segments in showers.

Angular dependence will be the main issue.

F.Corriveau IPP/McGill University – Progress Report – 2016.06.22 – DHCAL Track Segment Analysis

?