AHCAL Time Response Analysis 2

François Corriveau

IPP / McGill University Supported by DAAD and MPP

2019.07.10

Time walk vs hitEnergy [0-20 MIP]

vsenergy_20190617f_hitTimevsEne reco_run60382_testNewConstants.rc

Functional Forms

Form 1 ~ok until 8 MIPS Form 10 better behaved.

vsenergy_20190617h_hitTimevsEne reco_run60382_testNewConstants.re

Muons – Time Correction

raw data [0-30 MIP]

$$f_{01}(x) = a +$$

$$f_{10}(x) = a + be^{-1}$$

Functions

ahc_hitTime:ahc_hitEnergy {ahc_nHits>21&&ahc_nHits<53}

ahc_hitTime:ahc_hitEnergy {ahc_nHits>21&&ahc_nHits<53}

Observations

The hit time response is strongly dependent on the hit energy.

It is ~ uniform across modules, chips, channels, cells.

Not enough statistics for all 5472 combinations module x chip x channel.

See next 3 slides on how to ascertain the issue.

A functional form should be usable to correct the time:

```
384 (out of 16 possible, more muon runs)3616
```

$$f_{10}(x) = a + be^{-cx - cx}$$

2019.06.19 - F.Corriveau (IPP/McGill Univ.) - AHCAL Time Analysis

006

 \mathbf{C}

Entries 38 Mean 1.386 FMS 0.1356 Underflow 0 Overflow 0 <th></th> <th>b.06</th> <th></th>		b.06	
h05 Entries 4 Mean 1.495 RMS 0.0325 Underflow 0 Overflow 0 Integral 4 5 3 3.5 h05 Entries 36 Mean 1.301 RMS 0.3088 Underflow 0 Overflow 0 Integral 36 Entries 168 Mean 1.268 RMS 0.3559 Underflow 0 Integral 16		Entries Mean RMS Underflow Overflow Integral	38 1.386 0.1356 0 0 38
h05 Entries 4 Mean 1.495 RMS 0.0325 Underflow 0 Overflow 0 Integral 4 h05 Entries 36 Mean 1.301 RMS 0.3088 Underflow 0 Overflow 0 Integral 36 Entries 16 Mean 1.268 RMS 0.3559 Underflow 0 Integral 16			
h05 Entries 4 Mean 1.495 RMS 0.0325 Underflow 0 Integral 4 <u>h05</u> Entries 36 Mean 1.301 RMS 0.3088 Underflow 0 Integral 36 <u>h05</u> Entries 16 Mean 1.268 Underflow 0 Integral 36	5	<u>. </u>	1.5
h05 Entries 36 Mean 1.301 RMS 0.3088 Underflow 0 Overflow 0 Integral 36		h05 Entries Mean RMS Underflow Overflow Integral	4 1.495 0.0325 0 0 4
h05 Entries 36 Mean 1.301 RMS 0.3088 Underflow 0 Overflow 0 Integral 36			5
h05 5 3 3.5 Entries 16 Mean 1.268 RMS 0.3559 Underflow 0 Overflow 0 Integral 16		h05 Entries Mean RMS Underflow Overflow Integral	36 1.301 0.3088 0 0 36
h05 Entries 16 Mean 1.268 RMS 0.3559 Underflow 0 Overflow 0 Integral 16		- <mark>1</mark> 3	5
		h05 Entries Mean RMS Underflow Overflow Integral	16 1.268 0.3559 0 0 16
<u> </u>	5	- <u></u> 3	5

2019.06.19 - F.Corriveau (IPP/McGill Univ.) - AHCAL Time Analysis

	Entries Mean RMS Underflow Overflow Integral	1.514 0 0 0
5	- <mark></mark> 3.	5

	h05		
1	Entries	5472	
	Mean	0.6495	
	RMS	0.7884	
	Underflow	1979	
	Overflow	249	
	Integral	3244	
Le The	da ana ana ana ana ana ana ana ana ana a	ļ	

Single Channel Fits with Largest Statistics

aho_hitTime:aho_hitEnergy (aho_nHita>21&&aho_nHita<53&&modula==19&&chip

aho_hitTime:aho_hitEnergy (aho_nHits>21&&aho_nHits<53&& h05 pfx 6432 Entries Underflow Overflow Integral χ² / ndf -149.365.69/32 -3.882 ± 0.534 12.94 ± 3.21 p1 **p**2 0.07186 ± 0.22923 0.9918 ± 0.3828

caho_hitEnergy (aho_nHits>21&&aho_nHits<53&/ h06 pfx Entries Underflow Overflow #5 Integral -86.41 χ^2 / ndf 41.47/33 -4.158 ± 0.889 p0 p1 17.56 ± 2.09 p2 -0.1419 ± 0.0913 1.413 ± 0.200

LhtEnergy (ahc_nHits>21&&ahc_nHits<53&

aho_hitTime:aho_hitEnergy (aho_nHita>21&&aho_nHita<53&&rr

c_hitEnergy (ahc_nHits>21&&ahc_nHit h07 pfx Entries 6388 Underflow

ho_hitTime:aho_hitEnergy (aho_nHits>21&&aho_nHits<53&/

Occupancy and Cell Number

occupancy = hit density per single channel cell number = position in channel at readout time

nHits

occupancy

cell#

Muons - Occupancy

Entries Underflow Overflow Integral z^a / ndf Constant Mean Sigma

Electrons - Occupancy

Time Dependencies - Muons

vs Energy

ahc_hitTime:ahc_hitEnergy {ahc_nHits>21&&ahc_nHits<53}

ahc_hitTime:cellss {ahc_nHits>21&&ahc_nHits<53}

vs Occupancy

Time Dependencies - Electrons

vs Energy

vs Cell#

vs Occupancy

data+fit

Hit time response seems to be:

- very strongly dependent on hit energy (due to time walk / threshold), but similar for all types of particles
- somewhat dependent on cell number within channel at readout, especially for busy events such as electron showers
- almost independent on occupancy/hit density within a single channel ?

A robust functional form for the time walk is proposed.

Other observations should be confirmed.

More reprocessed muon data available soon to cover all chips.

2019.06.19 - F.Corriveau (IPP / McGill Univ.) - AHCAL Time Response Analysis - 15

Backup

Muon Event

Event =

24 profile zy projection Event =

24 profile yx projection Event =

Electron Event

Event =

65 profile zx projection

Event = 65 profile zy projection

Event =

65 profile yx projection

Pion Event

Event =

= 42 profile zx projection

Event = 42 profile zy projection

Event =

42 profile yx projection

