Max Planck Geselshaft Max Planck Geselshaft
dr. patric muggli
Home Conferences Publications Links Pictures
Experiments In The Press Journals Accelerators
My Picture PWFA Movie Jukebox Quickies
AWAKE@MPP Keeping Up E209

Keeping up with some interesting publications

Click HERE for a list by date

Plasma Wakefield Accelerator

Laser Wakefield Accelerator

Plasma Beatwave Accelerator

Vacuum Acceleration

Plasma Lens

Hose Instability

Free Electron Laser (FEL)

Electron Sources

Circular Accelerators

Other Accelerators

Laser Plasma Interactions

Beam Plasma Interactions

Ions/protons Generation

Dielectric Wakefields

 

Fusion Plasmas

Inertial Confinement

Plasma Physics

Radiation Generation

X-rays Generation

Terahertz Radiation Generation

Particle Beams

Particle Beam Diagnostics

Electron Cloud (ecloud)

Simulations

Optical Diagnostics

Astrophysics

General Physics

Others

Plasma Wakefield Accelerator (PWFA)

3rd European Advanced Accelerator Concepts workshop (EAAC2017) Proceedings, Edited by U. Dorda, et al., Nucl. Instr. and Meth in Phys. Res. A, 909 (2018).

Observation of High Transformer Ratio Plasma Wakefield Acceleration, G. Loisch, et al., Phys. Rev. Lett. 121, 064801 (2018).

Single-shot wakefield measurement system, Qiang Gao et al., Phys. Rev. Accel. Beams 21, 062801 (2018).

First results of the plasma wakefield acceleration experiment at PITZ, O.Lishilin et al., Nucl. Instr. and Meth. in Phys. Res. A 829, 37 (2016).

Limitation on the accelerating gradient of a wakefield excited by an ultrarelativistic electron beam in rubidium plasma N. Vafaei-Najafabadi et al., Phys. Rev. Accel. Beams 19, 101303 (2016).

Effect of beam emittance on self-modulation of long beams in plasma wakefield accelerators, K. Lotov, Physics of Plasmas 22, 103110 (2015).

Physics of beam self-modulation in plasma wakefield accelerators, K. Lotov, Physics of Plasmas 22, 123107 (2015).

Fluid simulation of relativistic electron beam driven wakefield in a cold plasma, R.K. Bera et al., Physics of Plasmas 22, 073109 (2015).

Positron Acceleration by Plasma Wakefields Driven by a Hollow Electron Beam Neeraj Jain et al., Phys. Rev. Lett. 115, 195001 (2015).

Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration, F. Lemery et al., Phys. Rev. ST Accel. Beams 18, 081301 (2015).

GEANT4 simulations for beam emittance in a linear collider based on plasma wakefield acceleration, O. Mete et al., Phys. Plasmas 22, 083101 (2015).

Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam, K. V. Lotov et al., Physics of Plasmas 21, 123116 (2014).

Plasma wakefield acceleration studies using the quasi-static code WAKE, Neeraj Jain et al., Phys. Plasmas 22, 023103 (2015).

Proceedings of the first European Advanced Accelerator Concepts Workshop 2013, Ralph Assmann, Massimo Ferrario, Jens Osterhoff and Arnd E. Specka Editors, Nucl. Instr. Meth. Phys. Res. A 740, (2013).

Coherent seeding of self-modulated plasma wakefield accelerators C. B. Schroeder et al., Phys. Plasmas 20, 056704 (2013).

Effect of plasma inhomogeneity on plasma wakefield acceleration driven by long bunches K. V. Lotov et al., Phys. Plasmas 20, 013102 (2013).

Natural noise and external wakefield seeding in a proton-driven plasma accelerator K. V. Lotov et al., Phys. Rev. ST Accel. Beams 16, 041301 (2013).

Comment on “Beamstrahlung considerations in laser-plasma-accelerator-based linear colliders”, V. Lebedev, et al., Phys. Rev. ST Accel. Beams 16, 108001 (2012).

Beamstrahlung considerations in laser-plasma-accelerator-based linear colliders, C. B. Schroeder, et al., Phys. Rev. ST Accel. Beams 15, 051301 (2012).

Particle beam self-modulation instability in tapered and inhomogeneous plasma, C. B. Schroeder, et al., Phys. of Plasmas 19, 010703 (2012).

Ion Motion in Self-Modulated Plasma Wakefield Accelerators, J. Vieira et al., Phys. Rev. Lett. 109, 145005 (2012).

Optimum angle for side injection of electrons into linear plasma wakefields K. V. Lotov, Journal of Plasma Physics 78(04), 455 (2012).

Controlled self-modulation of high energy beams in a plasma, K. V. Lotov, Physics of Plasmas 18, 024501 (2011).

Plasma wakefield acceleration with a modulated proton bunch A. Caldwell et al., Phys. Plasmas 18, 103101 (2011).

Growth and Phase Velocity of Self-Modulated Beam-Driven Plasma Waves C. B. Schroeder et al., Phys. Rev. Lett. 107, 145002 (2011).

Self-Modulation Instability of a Long Proton Bunch in Plasmas, N. Kumar et al., Phys. Rev. Lett. 104, 255003 (2010).

Monoenergetic Energy Doubling in a Hybrid Laser-Plasma Wakefield Accelerator, B. Hidding et al., Phys. Rev. Lett. 104, 195002 (2010).

Beam loading by electrons in nonlinear plasma wakes, M. Tzoufras et al., Phys. Plasmas 16, 056705 (2009).

Proton-driven plasma-wakefield acceleration, A. Caldwell et al., Nature Physics 5, 363 (2009).

Beam Loading in the Nonlinear Regime of Plasma-Based Acceleration, M. Tzoufras, et al., Phys. Rev. Lett. 101, 145002 (2008).

The effect of the vacuum-plasma transition and an injection angle on electron-bunch injection into a laser wakefield M. J. H. Luttikhof et al., Phys. Plasmas 14, 083101 (2007).

Diffusion of an annular plasma in positron acceleration, F.F. Chen, Phys. Plasmas 14, 122108 (2007).

Acceleration of positrons by electron beam-driven wakefields in a plasma, K. V. Lotov, Phys. Plasmas 14, 023101 (2007).

QUICKPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas, C.H. Huang, et al., J. Comp. Phys., 217(2), 658, (2006).

Numerical Simulation of the Creation of a Hollow Neutral-Hydrogen Channel by an Electron Beam, V. V. Ivanov, et al., Phys. Rev. Lett. 97, 205007 (2006).

A nonlinear theory for multidimensional relativistic plasma wave wakefields, W. Lu, et al., Phys. Plasmas 13, 056709 (2006).

A comparison of ultrarelativistic electron- and positron-bunch propagation in plasmas, C. T. Zhou, et al., Phys. Plasmas 13, 092109 (2006).

Limits of linear plasma wakefield theory for electron or positron beams, W. Lu, et al., Phys. Plasmas 12, 063101 (2005).

Effects of Ion Motion in Intense Beam-Driven Plasma Wakefield Accelerators, J.B. Rosenzweig, et al., Phys. Rev. Lett. 95, 195002 (2005).

Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields J. B. Rosenzweig et al., Phys. Rev. ST Accel. Beams 7, 061302 (2004).

Energy loss of a high charge bunched electron beam in plasma: Analysis N. Barov et al., Phys. Rev. ST Accel. Beams 7, 061301 (2004).

Cohesive Acceleration and Focusing of Relativistic Electrons in Overdense Plasma, V. Yakimenko et al., Phys. Rev. Lett. 91, 014802 (2003).

Experimental Demonstration of Wakefield Acceleration in a Tunable Dielectric Loaded Accelerating Structure, C. Jing et al., Phys. Rev. Lett. 106, 164802 (2011). Parametric exploration of intense positron beamplasma interactions, B.E. Blue et al., Laser and Particle Beams, 21, 497 (2003).

Plasma electron fluid motion and wave breaking near a density transition R. J. England, et al., Phys. Rev. E 66, 016501 (2002).

Plasma Electron Trapping and Acceleration in a Plasma Wake Field Using a Density Transition, H. Suk, et al., Phys. Rev. Lett. 86, 1011 (2001).

Plasma-wakefield acceleration of a positron beam, S. Lee, et al., Phys. Rev. E 64, 045501 (2001).

Simulations of a meter-long plasma wakefield accelerator, S. Lee, et al., Phys. Rev. E 61, 7014 (2000).

Observation of plasma wakefield acceleration in the underdense regime, N. Barov et al., Phys. Rev. ST Accel. Beams 3, 011301 (2000).

Excitation of nonlinear two-dimensional wake waves in radially nonuniform plasma, Arsen G. Khachatryan, Phys. Rev. E 60, 6210 - 6213 (1999)

On collinear wake field acceleration with high transformer ratio, V. M. Tsakanov, Nucl. Inst. Meth. Phys. Res. A 432(2-3), 202 (1999).

Propagation of Short Electron Pulses in a Plasma Channel, N. Barov, et al., Phys. Rev. Lett. 80, 81 (1998).

Plasma response to ultrarelativistic beam propagation, K. V. Lotov, Phys. Plasmas 3, 2753 (1996).

Towards a plasma wake-field acceleration-based linear collider J. Rosenzweig et al., Nucl. Inst. and Meth. in Phys. Res. A 10(3), 532 (1996).

IEEE-Trans. Plasma Sci., Special Issue on Second Ceneration Plasma Accelerators, , IEEE Trans. Plas. Sci. 24(2) (1996).

Trapping and acceleration in nonlinear plasma waves, E. Esarey et al., Phys. Plasmas 2, 1432 (1995).

Propagation of short electron pulses in underdense plasmas, N. Barov et al., Phys. Rev. E 49, 4407 (1994).

The role of plasma in advanced accelerators, J. Wurtele, Phys. Fluids B 5, 2363 (1993).

Self-consistent interaction between the plasma wake field and the driving relativistic electron beam, R. Fedele et al., Phys. Rev. A 45, 4045 (1992).

Vlasov simulations of very-large-amplitude-wave generation in the plasma wake-field accelerator, J. Krall et al., Phys. Rev. A 44, 6854 (1991).

Acceleration and focusing of electrons in two-dimensional nonlinear plasma wake fields , J. B. Rosenzweig et al., Phys. Rev. A 44, R6189 (1991).

Plasma wake-field accelerator experiments at KEK K. Nakajima et al., Nucl. Instr. and Meth. in Phys. Res. A: 292(1), 12 (1990).

Experimental Observation of Plasma Wake-Field Acceleration, J. B. Rosenzweig et al., Phys. Rev. Lett. 61, 98 (1988).

Electromagnetic Wave Generation with High Transformation Ratio by Intense Charged Particle Bunches, E. M. Laziev et al., EPAC 2008 Conference Proceeding, 523 (1988).

Nonlinear solution for optimal shaping of the driving electron beam in the plasma wake-field accelerator, Yiton T. Yan et al., Phys. Rev. A 38, 1490 (1988).

Beam loading in plasma accelerators, T. Katsouleas et al., Particle Accelerators 22, 81 (1987).

Plasma Focusing for High-Energy Beams P. Chen et al., IEEE Trans. Plasma Sci. 15(2), 218 (1987).

Two-dimensional dynamics of the plasma wakefield accelerator R. Keinigs et al., Phys. Fluids 30, 252 (1987).

Stability of the Driving Bunch in the Plasma Wakefield Accelerator, J.J. Su et al., IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. PS-15, NO. 2, APRIL 1987.

Nonlinear plasma dynamics in the plasma wake-field accelerator, J.B. Rosenzweig, et al., Phys. Rev. Lett. 58, 555 (1987).

Nonlinear plasma dynamics in the plasma wake-field accelerator, J.B. Rosenzweig, et al., IEEE TRANSACTIONS ON PLASMA SCIENCE, VOL. PS-15(2) (1987).

Energy Transfer in the Plasma Wake-Field Accelerator, P. Chen et al., Phys. Rev. Lett. 56, 1252 (1986).

Physical mechanisms in the plasma wake-field accelerator, T. Katsouleas, et al., Phys. Rev. A 33, 2056 (1986).

On colinear wakefiled acceleration, K. L. F. Bane et al., slac-pub-3662 (1985).

Plasma Accelerators, R. Ruth, et al., Proceedings of the Summer Institute on Particle Physics, Stanford, 297 (1985) (SLAC-R-296).

Collective Accelerator for Electrons, R.J. Briggs, Phys. Rev. Lett. 54, 2588 - 2591 (1985).

Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma, P. Chen, et al., Phys. Rev. Lett. 54, 693 (1985).

Improving the power efficiency of the plasma wakefield accelerator, S. van der Meer, CERN-PS-85-65-AA ; CLIC-Note-3 (1985).

R.D. Ruth et al., Plasma Accelerators 17, 171 (1985).

A Plasma Wakefield Accelerator, R.D. Ruth et al., SLAC-PUB-3374 (1984).

or
here.

Acceleration of Electrons by the Interaction of a Bunched Electron Beam with a Plasma, T. Tajima, et al., Phys. Rev. Lett. 43, 267 (1979).

Laser Wakefield Accelerator

Spin Filter for Polarized Electron Acceleration in Plasma Wakefields, Yitong Wu et al., Phys. Rev. Applied 13, 044064 (2020).

Single-shot reconstruction of core 4D phase space of high-brightness electron beams using metal grids, D. Marx, at al., Phys. Rev. Accel. Beams 21, 102802 (2018).

Narrow band and energy selectable plasma cathode for multistage laser wakefield acceleration, Y. Sakai, at al., Phys. Rev. Accel. Beams 21, 101301 (2018).

Toward low energy spread in plasma accelerators in quasilinear regime, Xiangkun Li, et al., Phys. Rev. Accel. Beams 21, 111301 (2018).

Observation of Laser Power Amplification in a Self-Injecting Laser Wakefield Accelerator, M. J. V. Streeter, et al., Phys. Rev. Lett. 120, 254801 (2018).

3rd European Advanced Accelerator Concepts workshop (EAAC2017) Proceedings, Edited by U. Dorda, et al., Nucl. Instr. and Meth in Phys. Res. A, 909 (2018).

Optical Control of the Topology of Laser-Plasma Accelerators, J. Vieira, et al., Phys. Rev. Lett. 121, 054801 (2018).

Energy-Chirp Compensation in a Laser Wakefield Accelerator, A. Döpp, et al., Phys. Rev. Lett. 121, 074802 (2018).

Electron Trapping from Interactions between Laser-Driven Relativistic Plasma Waves, G. Golovin, et al., Phys. Rev. Lett. 121, 104801 (2018).

Controlling the Self-Injection Threshold in Laser Wakefield Accelerators, S. Kuschel et al., Phys. Rev. Lett. 121, 154801 (2018).

Multi-MeV Electron Acceleration by Subterawatt Laser Pulses, A.J. Goers et al., Phys Rev Lett.115(19), 194802 (2015).

High quality electron bunch generation with CO2-laser-plasma interaction, Lingang Zhang et al., Phys. Plasmas 22, 023101 (2015).

Giga-electronvolt electrons due to a transition from laser wakefield acceleration to plasma wakefield acceleration, E. Masson-Laborde et al., Phys. Plasmas 21, 123113 (2014).

Multi-pulse laser wakefield acceleration: a new route to efficient, high-repetition-rate plasma accelerators and high flux radiation sources, S. M. Hooker et al., J. Phys. B: At. Mol. Opt. Phys. 47, 234003 (2014).

Field-Reversed Bubble in Deep Plasma Channels for High-Quality Electron Acceleration, A. Pukhov et al., Phys. Rev. Lett. 113, 245003 (2014).

Improving the Self-Guiding of an Ultraintense Laser by Tailoring Its Longitudinal Profile, M. Tzoufras et al., Phys. Rev. Lett. 113, 245001 (2014).

Multi-GeV Electron Beams from Capillary-Discharge-Guided Subpetawatt Laser Pulses in the Self-Trapping Regime, W. Leemans et al., Phys. Rev. Lett. 113, 245002 (2014).

Intrinsic normalized emittance growth in laser-driven electron accelerators, M. Migliorati et al., Phys. Rev. ST Accel. Beams 16, 011302 (2013).

Influence of a Magnetic Guide Field on Self-Injection in Wakefield Acceleration, A. Bourdier et al., Journal of Modern Physics, Vol. 3 No. 12, 1983 (2012).

Transverse emittance growth in staged laser-wakefield acceleration, T. Mehrling et al., Phys. Rev. ST Accel. Beams 15, 111303 (2012).

Beamstrahlung considerations in laser-plasma-accelerator-based linear colliders C. B. Schroeder et al., Phys. Rev. ST Accel. Beams 15, 051301 (2012).

Real-time observation of laser-driven electron acceleration, A. Buck et al., Nature Physics volume 7, pages 543–548 (2011).

Magnetic Control of Particle Injection in Plasma Based Accelerators J. Vieira et al., Phys. Rev. Lett. 106, 225001 (2011).

Nonlinear Pulse Propagation and Phase Velocity of Laser-Driven Plasma Waves, C. B. Schroeder et al., Phys. Rev. Lett. 106, 135002 (2011).

Monoenergetic Energy Doubling in a Hybrid Laser-Plasma Wakefield Accelerator, B. Hidding et al., Phys. Rev. lett. 104, 195002 (2010).

Ionization Induced Trapping in a Laser Wakefield Accelerator, C. McGuffey et al., Phys. Rev. Lett. 104, 025004 (2010).

Injection and Trapping of Tunnel-Ionized Electrons into Laser-Produced Wakes, A. Pak et al., Phys. Rev. Lett. 104, 025003 (2010).

Physics of laser-driven plasma-based electron accelerators E. Esarey et al., Rev. Mod. Phys. 81, 1229 (2009).

Generation of sub-GeV, quasi-monoenergetic and low emittance electron beam by laser wake-field acceleration with a plasma micro optics, T. Hosokai et al., Proccedings Conference on Lasers and Electro-Optics/Pacific Rim (2009).

Near-GeV Acceleration of Electrons by a Nonlinear Plasma Wave Driven by a Self-Guided Laser Pulse, S. Kneip, et al.,, Phys. Rev. Lett. 103, 035002 (2009).

Laser-driven plasma-wave electron accelerators, Wim Leemans and Eric Esarey, Physics Today / Volume 62 / Issue 3 (2009).

Cold Optical Injection Producing Monoenergetic, Multi-GeV Electron Bunches, X. Davoine, et al., Phys. Rev. Lett. 102, 065001 (2009).

Plasma-Density-Gradient Injection of Low Absolute-Momentum-Spread Electron Bunches, C. G. R. Geddes, et al., Phys. Rev. Lett. 100, 215004 (2008).

Multiple self-injection in the acceleration of monoenergetic electrons by a laser wake field, A. Oguchi et al., Phys. Plasmas 15, 043102 (2008).

Observation of Fine Structures in Laser-Driven Electron Beams Using Coherent Transition Radiation, Y. Glinec et al., Phys. Rev. Lett. 98, 194801 (2007).

Production of a monoenergetic electron bunch in a self-injected laser-wakefield accelerator, C.-L. Chang, et al., Phys. Rev. E 75, 036402 (2007).

Effect of Laser-Focusing Conditions on Propagation and Monoenergetic Electron Production in Laser-Wakefield Accelerators, A. G. R. Thomas et al., Phys. Rev. Lett. 98, 095004 (2007).

Modeling of a square pulsed capillary discharge waveguide for interferometry measurements, H. P. Broks et al., Phys. Plasmas 14, 023501 (2007).

Energy scaling of monoenergetic electron beams generated by the laser-driven plasma based accelerator, S. Masuda et al., Phys. Plasmas 14, 023103 (2007).

Transverse Interferometry of a Hydrogen-Filled Capillary Discharge Waveguide, A. J. Gonsalves, et al., Phys. Rev. Lett. 98, 025002 (2007).

Simulation of monoenergetic electron generation via laser wakefield accelerators for 525 TW lasers, F. S. Tsung, et al., Phys. Plasmas 13, 056708 (2006).

Seeded self-modulated laser wakefield acceleration, N. E. Andreev, et al., Phys. Rev. Lett. 96, 215502 (2006).

Imaging Electron Trajectories in a Laser-Wakefield Cavity Using Betatron X-Ray Radiation, Kim Ta Phuoc, et al., Phys. Rev. Lett. 97, 225002 (2006).

Ultrashort laser pulses and ultrashort electron bunches generated in relativistic laser-plasma interaction, J. Faure, et al., Phys. Plasmas 13, 056706 (2006).

Controlled plasma wave generation and particle acceleration through seeding of the forward Raman scattering instability M. Fomyts’kyi, et al., Phys. Plasmas 12, 023103 (2005).

Self-consistent interaction between the plasma wake field and the driving relativistic electron beam R. Fedele et al., Phys. Rev. E 72, 026402 (2005).

Control of seeding of Raman forward scattering and injection of electrons in a self-modulated laser wakefield accelerator by a copropagating prepulse, Ting-Yei Chien et al., Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, Technical Digest (2004).

Emittance Measurements of a Laser-Wakefield-Accelerated Electron Beam, S. Fritzler et al., Phys. Rev. Lett. 92, 165006 (2004).

Frequency chirp and pulse shape effects in self-modulated laser wakefield accelerators, C. B. Schroeder, et al., Physics of Plasmas 10, 2039 (2003).

Propagation of intense short laser pulses in the atmosphere, P. Sprangle et al., Phys. Rev. E 66, 046418 (2002).

Seeding of the forward Raman instability by ionization fronts and Raman backscatter, D. F. Gordon, et al., Phys. Rev. E 64, 046404 (2001).

Review of physics and applications of relativistic plasmas driven by ultra-intense lasers, D. Umstadter, Phys. Plasmas 8, 1774 (2001).

Simulations of a hydrogen-filled capillary discharge waveguide, N. A. Bobrova, et al., Phys. Rev. E 65, 016407 (2001).

Generation of a wakefield during gas ionization, N. E. Andreev et al., Plasma Physics Reports 26(11), 947 (2000).

Investigation of a hydrogen plasma waveguide, D.J. Spence, et al., Phys. Rev. E 63, 015401 (2000).

Propagation and stability of intense laser pulses in partially stripped plasmas, P. Sprangle et al., Phys. Rev. E 56, 5894 (1997).

Temporal Characterization of a Self-Modulated Laser Wakefield, S. P. Le Blanc et al., Phys. Rev. Lett. 77, 5381 (1996)

Enhanced Raman forward scattering, D. L. Fisher et al., Phys. Rev. E 53, 1844 (1996)

Self-guiding and stability of intense optical beams in gases undergoing ionization, P. Sprangle et al., Phys. Rev. E 54, 4211 (1996).

Overview of plasma-based accelerator concepts, E. Esarey et al., IEEE Transactions on Plasma Science, 24(2), 252 (1996).

IEEE-Trans. Plasma Sci., Special Issue on Second Ceneration Plasma Accelerators, , IEEE Trans. Plas. Sci. 24(2) (1996).

Instabilities of Short-Pulse Laser Propagation through Plasma Channels G. Shvets et al., Phys. Rev. Lett. 73, 3540 (1994).

Envelope analysis of intense laser pulse self-modulation in plasmas E. Esarey et al., Phys. Rev. Lett. 72, 2887 (1994).

Wake-field effect induced by laser multiple pulses G. Bonnaud et al., Phys. Rev. E 50, R36-R39 (1994).

Ponderomotive force of a uniform electromagnetic wave in a time varying dielectric medium W. Mori et al., Phys. Rev. Lett. 69, 3495 (1992).

Plasma Beatwave Accelerator (PBWA)

Autoresonant beat-wave generation, R. R. Lindberg, et al., Phys. Plasmas 13, 123103 (2006).

Vacuum Acceleration

Electron acceleration by a chirped Gaussian laser pulse in vacuum, F. Sohbatzadeh, et al., Phys. Plasmas 13, 123108 (2006).

Proposed few-optical cycle laser-driven particle accelerator structure, T. Pletner, et al., Phys. Rev. ST Accel. Beams 9, 111301 (2006).

R. Williams , PhD Dissertation, UCLA (1992).

Acceleration of particles by an asymmetric Hermite-Gaussian laser beam, E. J. Bochove, et al., Phys. Rev. A 46, 6640 (1992).

Lasers and Accelerators, J.D. Lawson, Nuclear Science, IEEE Transactions on, 26(3) (1979).

Plasma Lens

Direct measurement of focusing fields in active plasma lenses, J.-H. Röckemann, et al., Phys. Rev. Accel. Beams 21, 122801 (2018).

Focusing of High-Brightness Electron Beams with Active-Plasma Lenses, R. Pompili et al., Phys. Rev. Lett. 121, 174801 (2018).

Emittance Preservation in an Aberration-Free Active Plasma Lens, C. A. Lindstrøm et al., Phys. Rev. Lett. 121, 194801.

The electrostatic plasma lens, Alexey Goncharov, Rev. Sci. Instrum. 84, 021101 (2013).

Observations of low-aberration plasma lens focusing of relativistic electron beams at the underdense threshold, M. C. Thompson et al., Phys. Plasmas 17, 073105 (2010).

Observation of Return Current Effects in a Passive Plasma Lens, R. Govil et al., Phys. Rev. Lett. 83, 3202 (1999).

Observation of Plasma Focusing of a 28.5 GeV Positron Beam, J. S. T. Ng, et al., Phys. Rev. Lett. 87, 244801 (2001).

Experimental demonstration of dynamic focusing of a relativistic electron bunch by an overdense plasma lens, G. Hairapetian et al., Phys. Rev. Lett. 72, 2403 - 2406 (1994).

Direct observation of plasma-lens effect, H. Nakanishi et al., Phys. Rev. Lett. 66, 1870 (1991).

Plasma lenses for focusing particle beams, J. J. Su et al., Phys. Rev. A 41, 3321 (1990).

Plasma-based adiabatic focuser, P. Chen, et al., Phys. Rev. Lett. 64, 1231 (1990).

Final focusing and enhanced disruption from an underdense plasma lens in a linear collider, P. Chen, et al., Phys. Rev. D 40, 923 (1989).

Beam optics of a self-focusing plasma lens, J. B. Rosenzweig et al., Phys. Rev. D 39, 2039 (1989).

A Focusing Device for the External 350‐Mev Proton Beam of the 184‐Inch Cyclotron at Berkeley, W. K. H. Panofsky et al., Review of Scientific Instruments 21, 445 (1950).

Hose Instability

Intrinsic Stabilization of the Drive Beam in Plasma-Wakefield Accelerators, A. Martinez de la Ossa et al., Phys. Rev. Lett. 121, 064803 (2018).

Saturation of the Hosing Instability in Quasilinear Plasma Accelerators, R. Lehe et al., Phys. Rev. Lett. 119, 244801 (2017).

Hosing Instability Suppression in Self-modulated Plasma Wakefields J. Vieira et al., Phys. Rev. Lett. 112, 205001 (2014).

Coherent seeding of self-modulated plasma wakefield accelerators C. B. Schroeder et al., Phys. Plasmas 20, 056704 (2013).

Coupled beam hose and self-modulation instabilities in overdense plasma C. B. Schroeder et al., Phys. Rev. E 86, 026402 (2013).

Hosing Instability in the Blow-Out Regime for Plasma-Wakefield Acceleration C. Huang et al., Phys. Rev. Lett. 99, 255001 (2007).

Hose Instability and Wake Generation by an Intense Electron Beam in a Self-Ionized Gas, S. Deng et al., Phys. Rev. Lett. 96, 045001 (2006).

Collective instabilities and beam-plasma interactions in intense heavy ion beam, Ronald C. Davidson, et al., Phys. Rev. ST Accel. Beams 7, 114801 (2004).

Seeding of the forward Raman instability by ionization fronts and Raman backscatter, D. F. Gordon, et al., Phys. Rev. E 64, 046404 (2001).

A Long-Wavelength Hosing Instability in Laser-Plasma Interactions B. J. Duda et al., Phys. Rev. Lett. 83,1978 (1999).

Radial oscillations and the ion hose instability of an electron beam propagating in a periodic ion channel R. A. Bosch et al., Physics of Fluids 31, 634 (1998).

Controlling the resistive hose instability in relativistic electron beams R. F. Fernsler et al., Physics of Plasmas 2, 4338 (1998).

Hose-Modulation Instability of Laser Pulses in Plasmas P. Sprangle et al., Phys. Rev. Lett. 73, 3544 (1994).

Electron‐hose instability of a relativistic electron beam in an ion‐focusing channel, M. Lampe et al., Physics of Fluids B: Plasma Physics 5, 1888 (1993).

Electron-hose instability in the ion-focused regime, D. H. Whittum, et al., Phys. Rev. Lett. 67, 991 (1991).

Measurement of the electron–ion‐hose instability growth rate R. J. Lipinski, at al., Physics of Fluids B: Plasma Physics 2, 2764 (1990).

Resistive hose instability of a beam with the Bennett profile, E. J. Lauer, et al., Physics of Fluids 21, 1327 (1978).

Measurements of hose instability of a relativistic electron beam, E. J. Lauer, et al., Physics of Fluids 21, 1344 (1978).

Behavior of relativistic beams undergoing hose motion in a plasma channel, K. G. Moses, et al., Physics of Fluids 16, 436 (1973).

Macroscopic Quasilinear Theory of the Garden‐Hose Instability, R. C. Davidson, et al., Physics of Fluids 11, 2259 (1968).

Free Electron Laser (FEL)

Characterisation of microbunching instability with 2D Fourier analysis, A. D. Brynes et al., Scientific Reports volume 10, 5059 (2020).

Phase-Stable Self-Modulation of an Electron Beam in a Magnetic Wiggler, P. MacArthur et al., Phys. Rev. Lett. 123, 214801 (2019).

Robustness of a plasma acceleration based free electron laser, M. Labat, at al., Phys. Rev. Accel. Beams 21, 114802 (2018).

Enhancing the Radiation Resistance of Undulator Permanent Magnets by Tilting the Easy Axis of Magnetization, T. Bizen et al., Phys. Rev. Lett. 121, 124801 (2018).

Proposal to Generate an Isolated Monocycle X-Ray Pulse by Counteracting the Slippage Effect in Free-Electron Lasers, T. Tanaka et al., Phys. Rev. Lett. 114, 044801 (2015).

Experimental Demonstration of a Soft X-Ray Self-Seeded Free-Electron Laser, D. Ratner et al., Phys. Rev. Lett. 114, 054801 (2015).

Compact X-ray Free-Electron Laser from a Laser-Plasma Accelerator Using a Transverse-Gradient Undulator, Z. Huang et al., Phys. Rev. Lett. 109, 204801 (2012).

Generating Optical Orbital Angular Momentum in a High-Gain Free-Electron Laser at the First Harmonic, E. Hemsing et al., Phys. Rev. Lett. 106, 164803 (2011).

Self-Amplified Spontaneous Emission Free-Electron Laser with an Energy-Chirped Electron Beam and Undulator Tapering, L. Giannessi et al., Phys. Rev. Lett. 106, 144801 (2011).

X-ray free-electron lasers, B. W. J. McNeil et al., Nature Photonics 4, 814 (2010).

Coherence properties of hard x-ray synchrotron sources and x-ray free-electron lasers, I A Vartanyants et al., New J. Phys. 12 035004 (2010).

Free-electron laser harmonic generation in an electromagnetic-wave wiggler and ion channel guiding, H. Mehdian et al., Phys. Plasmas 17, 023112 (2010).

Free-electron lasers, S. Khan, Journal of Modern Optics Volume 55, Issue 21 (2008).

Spatiotemporal Stability of a Femtosecond Hard X-Ray Undulator Source Studied by Control of Coherent Optical Phonons, P. Beaud et al., Phys. Rev. Lett. 99, 174801 (2007).

Feasibility of an Electron-Based Crystalline Undulator, Mehdi Tabrizi et al., Phys. Rev. Lett. 98, 164801 (2007).

Experimental Characterization of Superradiance in a Single-Pass High-Gain Laser-Seeded Free-Electron Laser Amplifier, T. Watanabe, et al., Phys. Rev. Lett. 98, 034802 (2007).

Transverse-to-longitudinal emittance exchange to improve performance of high-gain free-electron lasers, P. Emma et al., Phys. Rev. ST Accel. Beams 9, 100702 (2006).

Formation of electron bunches for harmonic cascade x-ray free electron lasers, M. Cornacchia et al., Phys. Rev. ST Accel. Beams 9, 120701 (2006).

Seeded free-electron and inverse free-electron laser techniques for radiation amplification and electron microbunching in the terahertz range, C. Sung et al., Phys. Rev. ST Accel. Beams 9, 120703 (2006).

Electron bunch acceleration in an inverse free-electron laser with a helical magnetic wiggler and axial guide field, S. Mirzanejhad, et al., Phys. Plasmas 13, 123105 (2006).

Raman and Thompson regimes of amplification in a wiggler with noncollinear laser and electron beams, D. N. Klochkov, et al., Phys. Rev. E 74, 036503 (2006).

Experimental Study of Coaxial Free-Electron Maser Based on Two-Dimensional Distributed Feedback, I. V. Konoplev, et al. Phys. Rev. Lett. 96, 035002 (2006).

First operation of a free-electron laser generating GW power radiation at 32 nm wavelength, V. Ayvazyan et al., The European Physical Journal D 37(2), 1434 (2006).

Formation of electron bunches for harmonic cascade x-ray free electron lasers, M. Cornacchia et al., Phys. Rev. ST Accel. Beams 9, 120701 (2006).

Optical klystron enhancement to self-amplified spontaneous emission free electron lasers, Y. Ding et al., Phys. Rev. ST Accel. Beams 9, 070702 (2006).

First operation of a free-electron laser generating GW power radiation at 32 nm wavelength, V. Ayvazyan et al., The European Physical Journal D, 297 (2005).

High Energy Gain of Trapped Electrons in a Tapered, Diffraction-Dominated Inverse-Free-Electron Laser, P. Musumec et al., Phys. Rev. Lett. 94, 154801 (2005).

Experiments with electron beam modulation at the DUVFEL accelerator, T. Shaftan et al., Nucl. Instr. and Meth. Phys. Res. A 528(1-2), 397 (2004).

Results of the VISA SASE FEL experiment at 840 nm, A. Murokh et al., Nucl. Instr. and Meth. Phys. Res. A 507(1-2), 41 (2003).

LCLS Conceptual design Report 2002, here or here

Exponential Gain and Saturation of a Self-Amplified Spontaneous Emission Free-Electron Laser, S. V. Milton et al., Science Vol. 292. no. 5524, pp. 2037 (2001).

Free-Electron Lasers: Status and Applications, P. G. O'Shea, Science Vol. 292. no. 5523, pp. 1853 (2001).

First Observation of Self-Amplified Spontaneous Emission in a Free-Electron Laser at 109 nm Wavelength, J. Andruszkow et al., Phys. Rev. Lett. 85, 3825 (2000).

Effect of a Matched Electron Beam on High-Gain Free-Electron-Laser Amplifier Performance, H. Freund, et al., Phys. Rev. Lett. 80, 520 (1998).

Analytical theory of short-pulse free-electron laser oscillators, N. Piovella et al., Phys. Rev. E 52, 5470 (1994).

Infrared subpicosecond laser pulses with a free-electron laser, F. Glotin et al., Phys. Rev. Lett. 71, 2587 - 2590 (1993).

Macroparticle theory of a standing wave free-electron laser two-beam accelerator, Ken Takayama et al., Nucl. instrum. methods phys. res. A, 320, 58 (1992).

Tutorial on classical free electron laser theory, W.B. Colson, Phys. Fluids 237(1), 1 (1985).

Collective instabilities and high-gain regime in a free electron laser, R. Bonifacio et al., Opt. Com. 50(5), 373 (1984).

Noise in free-electron laser amplifier, H. Haus, IEEE Journal of Quantum Electronics 17(8), 1427 (1981).

The nonlinear wave equation for higher harmonics in free-electron lasers, W. Colson, IEEE Journal of Quantum Electronics 17(8), 1417 (1981).

Interaction of Relativistic Particles and Free Electromagnetic Waves in the Presence of a Static Helical Magnet, R.B. Palmer , Journal of Applied Physics, 43(7), 3014 (1972).

Electron Sources

Production of polarized particle beams via ultraintense laser pulses, Ting Sun et al., Reviews of Modern Plasma Physics volume 6, Article number: 38 (2022) ).

Conductivity Induced by High-Field Terahertz Waves in Dielectric Material, B. D. O’Shea et al., Phys. Rev. Lett. 123, 134801 (2019).

Observation of Field-Emission Dependence on Stored Energy Jiahang Shao et al., Phys. Rev. Lett. 115, 264802 (2015).

Experimental Demonstration of Energy-Chirp Control in Relativistic Electron Bunches Using a Corrugated Pipe, P. Emma et al., Phys. Rev. Lett. 112, 034801 (2014).

Experimental Demonstration of Electron Longitudinal-Phase-Space Linearization by Shaping the Photoinjector Laser Pulse, G. Penco et al., Phys. Rev. Lett. 112, 044801 (2014).

Power coupling, D. Alesini, arXiv:1112.3201 [physics.acc-ph] (2011).

Demonstration of a High-Field Short-Period Superconducting Helical Undulator Suitable for Future TeV-Scale Linear Collider Positron Sources D. J. Scott et al., Phys. Rev. Lett. 107, 174803 (2011).

Experimental Demonstration of Emittance Compensation with Velocity Bunching, M. Ferrario et al., Phys. Rev. Lett. 104, 054801 (2010).

Multiphoton Photoemission from a Copper Cathode Illuminated by Ultrashort Laser Pulses in an rf Photoinjector, P. Musumeci et al., Phys. Rev. Lett. 104, 084801 (2010).

Generation of short THz bunch trains in a RF photoinjector, M. Boscolo et al., Nucl. Instr. and Meth. Phys. Res. A 577(3), 409 (2007).

Proposal for a Quantum-Degenerate Electron Source, M. Zolotorev et al., Phys. Rev. Lett. 98, 184801 (2007).

High current superconducting gun at 703.75 MHz, R. Calaga et al., Physica C: Superconductivity, Volume 441, Issues 1-2, 15 July 2006, Pages 159-172

Emittance compensation of compact superconducting guns and booster linac system, Xiangyun Chang et al., Phys. Rev. ST Accel. Beams 9, 044201 (2006).

Multivariate optimization of a high brightness dc gun photoinjector, Ivan V. Bazarov et al., Phys. Rev. ST Accel. Beams 8, 034202 (2005).

Generation of angular-momentum-dominated electron beams from a photoinjector, Y.-E Su, Phys. Rev. ST Accel. Beams 7, 123501 (2004).

Subpicosecond compression by velocity bunching in a photoinjector, P. Piot et al., Phys. Rev. ST Accel. Beams 6, 033503 (2003).

First operation of a superconducting RF-gun, D. Janssenr et al., Nucl. Instr. and Meth. Phys. Res. B. 507(1-2), 314 (2003).

Overview of high-brightness, high-average-current photoinjectors for FELs, Steven J. Russell, Nucl. Instr. and Meth. Phys. Res. A 507(1-2), 301 (2003).

RF focussing - an instrument for beam quality improvement in superconducting RF guns, D. Janssen et al., Nucl. Instr. and Meth. Phys. Res. A. 452, (1-2), 34 (2000).

Generation and acceleration of high-charge short-electron bunches, M. E. Conde et al., Phys. Rev. ST Accel. Beams 1, 041302 (1998).

RF PHOTOINJECTORS, J. E. Clendenin, Proceedings LINAC 96, p. 298 (1996)

Experimental observation of high-brightness microbunching in a photocathode rf electron gun, X. J. Wang et al., Phys. Rev. E 54, R3121 - R3124 (1996).

Experimental observation of high-brightness microbunching in a photocathode rf electron gun, X. J. Wang, et al., Phys. Rev. E 54, R3121 (1996).

Review of Electron Guns, C. Travier, Proceedings EPAC'94, p. 317 (1994).

First operation of a photocathode radio frequency gun injector at high duty factor, D. H. Dowell et al., Appl. Phys. Lett. 63, 2035 (1993).

New photoelectric injector design for the Los Alamos National Laboratory XUV FEL accelerator, B. Carlsten et al., Nuclear Instruments and Methods in Physics Research Section A, 285(1–2), 313 (1989).

Physics design of the high brightness linac for the advanced free-electron laser initiative at Los Alamos, R.L. Sheffield et al., Nucl. Instr. and Meth. Phys. Res. A 318(1-3), 282 (1992).

Statistical Mechanics of Relativistic Streams. I, K. M. Watson et al., Phys. Fluids 3, 741 (1960).

Statistical Mechanics of Relativistic Streams. II, K. M. Watson et al., Phys. Fluids 3, 747 (1960).

Circular Accelerators

Accelerator physics and technology challenges of very high energy hadron colliders V. D. Shiltsev et al., Int. J. Mod. Phys. A, 30, 1544001 (2015).

Exact 1D model for coherent synchrotron radiation with shielding and bunch compression, C. Mayes et al., Phys. Rev. ST Accel. Beams 12, 024401 (2009).

The Large Hadron Collider, Lyndon Evans, New Journal of Physics, Volume 9, 335 (2007).

Experimental Demonstration of Colliding-Beam-Lifetime Improvement by Electron Lenses, V. Shiltsev et al., Phys. Rev. Lett. 99, 244801 (2007).

High-Efficiency Volume Reflection of an Ultrarelativistic Proton Beam with a Bent Silicon Crystal, Walter Scandale et al., Phys. Rev. Lett. 98, 154801 (2007).

Incoherent Effects of Electron Clouds in Proton Storage Rings, E. Benedetto et al., Phys. Rev. Lett. 97, 034801 (2006).

Synergia: An accelerator modeling tool with 3-D space charge, J. Amundson, et al., J. Comp. Phys. 211(1), 229 (2006).

Volume Reflection of a Proton Beam in a Bent Crystal, Yu. M. Ivanov, et al., Phys. Rev. Lett. 97, 144801 (2006).

Experimental Demonstration of Relativistic Electron Cooling, Sergei Nagaitsev, et al., Phys. Rev. Lett. 96, 044801 (2006).

The interaction of relativistic particles with strong crystalline fields, U.I. Uggerhej , Rev. Mod. Phys. 77, 1131 (2005).

Commissioning of a first-order matched transition jump at the Brookhaven Relativistic Heavy Ion Collider, Author et al., Phys. Rev. ST Accel. Beams 7, 011001 (2004).

Review of single bunch instabilities driven by an electron cloud, F. Zimmermann, Phys. Rev. ST Accel. Beams 7, 124801 (2004).

STATUS OF THE LHC PROTON BEAM IN THE CERN SPS G. Arduini, EPAC 2002 Proceedings, p206. (2002).

Electron cloud buildup and related instability in the CERN Proton Synchrotron , R. Cappi et al., Phys. Rev. ST Accel. Beams 5, 094401 (2002).

Wake-field and fast head-tail instability caused by an electron cloud, K. Ohmi et al., Phys. Rev. E 65, 016502 (2001).

Simulation and Observation of the Long-Time Evolution of the Longitudinal Instability in a Cooler Storage Ring, O. Boine-Frankenheim, et al., Phys. Rev. Lett. 82, 3256 (1999).

Protection of the CERN Large Hadron Collider, R Schmidt, et al., New J. Phys. 8 290 (1997).

Emittance growth mechanisms for space-charge dominated beams in fixed field alternating gradient and proton driver rings, S Y Lee, et al., New J. Phys. 8 291 (1997).

The free-electron laser harmonic cascade, L. Giannessi, et al., New J. Phys. 8 294 (1997).

Beam dynamics in a high brightness linac for short wavelength SASE-FEL experiments, M. Ferrario, et al., New J. Phys. 8 295 (1997).

High-energy electron cooling in a collider, A V Fedotov, et al., New J. Phys. 8 283 (1997).

Microbunch Radiative Tail-head Interaction, Ya.S. Derbenev et al., TESLA-FEL95-05, (1995).

Spin tune shifts in storage rings, Yu.I. Eidelmanr et al., Nucl. Instr. and Meth. Phys. Res. A 357(1), 23 (1995).

Observations of a fast transverse instability in the PSR D. Neuffer et al., Nuclear Instruments and Methods in Physics Research Section A, 312, 1 (1992).

Coupling impedance in modern accelerators, S. A. Heifets and S. A. Kheifets, Rev. Mod. Phys. 63, 631 (1991).

Prospects for High Energy e- e+ Linear Colliders R B Palmer, Annual Review of Nuclear and Particle Science 4, 529 (1990).

Transverse betatron tune measurements, Mario Serio et al., Lecture Notes in Physics,Volume 343/1989, Springer Berlin/Heidelberg.

Basic course on accelerator optics, P. Schmüser, CAS - CERN Accelerator School : Accelerator Physics, Aarhus, Denmark, 15 - 26 Sep 1986, 1 (1986).

Polarized beams in high energy storage rings, B.W Montague, Physics Reports 113(1),1 (1984).

The CERN Proton-Antiproton Colliding Beam Facilities, Billinge, R. et al., IEEE Transactions on Nuclear Science 26(3) 2974 (1979).

Theoretical aspects of the behaviour of beams in accelerators and storage rings : International School of Particle Accelerators of the "Ettore Majorana" Centre for Scientific Culture, CERN Yellow Report 77-13 (1977).

The Physics of Electron Storage Rings: an Introduction, M. Sands, SLAC Report 121, 1970.

Other Accelerators

Efficient Nonthermal Particle Acceleration by the Kink Instability in Relativistic Jets, E. P. Alves et al., Phys. Rev. Lett. 121, 245101 (2018).

Electron acceleration through two successive electron beam driven wakefield acceleration stages, C.Jing et al., Nucl. Instrum. Methods Phys. Res. A, 898, 72 (2018).

Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure, E. I. Simakov et al., Phys. Rev. Lett. 116, 064801 (2016).

TeV/m nano-accelerator: Investigation on feasibility of CNT-channeling acceleration at Fermilab, Y.M. Shin et al., Nucl. Instr. and Meth. in Phys. Res. B 355, 94 (2015).

Dielectric laser accelerators, J. England et al., Rev. Mod. Phys. 86(4), 1337 (2014).

Silicon buried gratings for dielectric laser electron accelerators, Chia-Ming Chang et al., Appl. Phys. Lett. 104, 184102 (2014).

International Linear Collider Technical Design Report (ILC TDR) , June 12 (2013).

Three-dimensional dielectric photonic crystal structures for laser-driven acceleration, B. Cowan, et al., Phys. Rev. ST Accel. Beams 11, 011301 (2008).

Observation of Enhanced Transformer Ratio in Collinear Wakefield Acceleration, C. Jing, et al., Phys. Rev. Lett. 98, 144801 (2007).

Experimental Observation of Direct Particle Acceleration by Stimulated Emission of Radiation, S. Banna, et al., Phys. Rev. Lett. 97, 134801 (2006).

The Photon collider at ILC: status, parameters and technical problems, V.I. Telnov, arXiv:physics/0604108v1 (2006).

Laser acceleration of electrons in vacuum, E. Esarey et al., Phys. Rev. E 52, 5443 (2006).

PHYSICS OPPORTUNITIES WITH A TEV LINEAR COLLIDER, S. Dawson and M Oreglia, Annual Review of Nuclear and Particle Science Vol. 54: 269 (2004).

Frequency and Temperature Dependence of Electrical Breakdown at 21, 30, and 39 GHz, H. H. Braun, et al., Phys. Rev. Lett. 90, 224801 (2003).

Plasma wake-field accelerator experiments at KEK, K. Nakajima et al., Nucl. Instr. Meth. Phys. Res. A, 292(1), 12 (2002).

Experimental study of rf pulsed heating on oxygen free electronic copper, D. Pritzkau et al., Phys. Rev. ST Accel. Beams 5, 112002 (2002).

The Spallation Neutron Source, M. White, Proceedings of the XXI Linac Conference, p.1 (2002) (pdf).

THE LOS ALAMOS NATIONAL LABORATORY PLASMA WAKEFIELD EXPERIMENT, S. J. Russell et al., Proceedings Particle Accelerators Conference, 4095 (2001).

The U.S. accelerator transmutation of waste program, Denis E. Beller et al., Nucl. Instr. and Meth. Phys. Res. A 463(3), 468 (2001).

Tutorial on Linear Colliders, F. Zimmermann, AIP Conf. Proc. 592, 494 (2000).

Proceedings of the HIGH QUALITY BEAMS: Joint US-CERN-JAPAN-RUSSIA Accelerator School, S.I. Kurokawa , Shyh-Yuan Lee , J. Miles and E.A. Perevedentsev Eds., AIP Conf. Proc. 592, (2000). Scaling Linear Colliders to 5 TeV and Above, Perry B. Wilson, SLAC-PUB-7449 (1997).

Nuclear energy generation and waste transmutation using an accelerator-driven intense thermal neutron source, C. D. Bowman, et al., Nucl. Instr. Meth. Phys. Res. A 320, 336 (1992).

Frontiers of particle beam physics A. M. Sessler, Physics of Fluids B: Plasma Physics 2, 1325 (1990).

Beamstrahlung and QED Backgrounds at Future Linear Colliders, D. Schroeder, SLAC-Pub (1990).

Very High Energy Colliders, B. Richter, Proceedings of the Summer Institute on Particle Physics, Stanford, 239 (1985) (SLAC-R-296).

Some Issues Involved in the design of a 1TeV (c.m.) e-e+ Linear Collider Using Conventional Technology, G.A. Loew, Proceedings of the Summer Institute on Particle Physics, Stanford, 251 (1985) (SLAC-R-296).

Collective Accelerator for Electrons, R. J. Briggs, et al., Phys. Rev. Lett. 54, 2588 (1985).

Wakefield Accelerators, P.B. Wilson, Proceedings of the Summer Institute on Particle Physics, Stanford, 273 (1985) (SLAC-R-296).

On Collinear Wake Field Acceleration, K. Bane et al., IEEE Trans. on Nucl. Sci. NS-32(7), 3524 (1985).

Update on the High-Current Injector for the Stanford Linear Collider, M.B. James et al., IEEE Trans. on Nuvl. Sci. NS-30(7), 2992 (1983).

Collective Electron Driven Linac for High Energy Physics, J.T. Seeman, IEEE Trans. on Nuvl. Sci. NS-30(7), 3180 (1983).

Theory of Electron Beam Loading in Linear Accelerators, G Saxon, Proc. Phys. Soc. B 67, 705 (1954).

Laser Plasma Interactions

Visualization of relativistic laser pulses in underdense plasma, M. B. Schwab et al., Phys. Rev. Accel. Beams 23, 032801 (2020).

Magnetic Field Generation in Plasma Waves Driven by Copropagating Intense Twisted Lasers, Y. Shi et al., Phys. Rev. Lett. 121, 145002 (2018).

Step density model of laser sustained ion channel and Coulomb explosion, Satish Kumar Rajouria et al., Phys. Plasmas 22, 023104 (2015).

A modified rate equation for the propagation of a femtosecond laser pulse in field-ionizing medium, Cheng-Xin Yu et al., Phys. Rev. Lett. 111, 205101 (2013).

Ultrashort filaments of light in weakly ionized, optically transparent media, L Berge et al., Rep. Prog. Phys. 70 1633 (2010).

Direct, Absolute, and In Situ Measurement of Fast Electron Transport via Cherenkov Emission, Hideaki Habara et al., Phys. Rev. Lett. 104, 055001 (2010).

Laser-driven plasma waves in capillary tubes F. Wojda et al., Phys. Rev. E 80, 066403 (2009).

Relativistic Laser-Plasma Interactions, Milos M. Skoric, AIP Conf. Proc. 1188, pp. 15 (2009).

Multiple filamentation of intense femtosecond laser pulses in air, A. A. Ionin et al., JETP Lett 90(6), 423 (2009).

Nonlinear Collisional Absorption of Laser Light in Dense Strongly Coupled Plasmas, A. Grinenko, et al., Phys. Rev. Lett. 103, 065005 (2009).

Artificial Collimation of Fast-Electron Beams with Two Laser Pulses, A.P.L. Robinson, Phys. Rev. Lett. 100, 025002 (2008).

Plasma mirrors for ultrahigh-intensity optics, C. Thaury et al., Nature Physics 3, 424 (2007).

Femtosecond filamentation in transparent media, A. Couairon et al., Physics Reports 441(2–4), 47 (2007).

Interaction of short-pulse ultrarelativistic electron bunch with plasmas, C. T. Zhou et al., EPL 79 35001 (2007).

Experimental observations of transport of picosecond laser generated electrons in a nail-like target, J. Pasley et al., Phys. Plasmas 14, 120701 (2007).

Reduction of the Rayleigh-Taylor instability growth with cocktail color irradiation, K. Otani et al., Phys. Plasmas 14, 122702 (2007).

Isochoric heating in heterogeneous solid targets with ultrashort laser pulses, Y. Sentoku et al., Phys. Plasmas 14, 122701 (2007).

Controlling Stimulated Brillouin Backscatter with Beam Smoothing in Weakly Damped Systems, Laurent Divol, Phys. Rev. Lett. 99, 155003 (2007).

Dynamical Study of Femtosecond-Laser-Ablated Liquid-Aluminum Nanoparticles Using Spatiotemporally Resolved X-Ray-Absorption Fine-Structure Spectroscopy, Katsuya Oguri et al., Phys. Rev. Lett. 99, 165003 (2007).

Experimental observations of transport of picosecond laser generated electrons in a nail-like target, J. Pasley et al., Phys. Plasmas 14, 120701 (2007).

Cherenkov radiation of a fast electron in ultrashort intense laser plasmas, Qiang-Lin Hu et al., Phys. Plasmas 14, 123101 (2007).

Reduction of the Rayleigh-Taylor instability growth with cocktail color irradiation, K. Otani et al., Phys. Plasmas 14, 122702 (2007).

Isochoric heating in heterogeneous solid targets with ultrashort laser pulses, Y. Sentoku et al., Phys. Plasmas 14, 122701 (2007).

Fine Structure of a Laser-Plasma Filament in Air, Shmuel Eisenmann et al., Phys. Rev. Lett. 98, 155002 (2007).

Lateral Electron Transport in High-Intensity Laser-Irradiated Foils Diagnosed by Ion Emission, P. McKenna et al., Phys. Rev. Lett. 98, 145001 (2007).

Quenching of the Nonlocal Electron Heat Transport by Large External Magnetic Fields in a Laser-Produced Plasma Measured with Imaging Thomson Scattering, D. H. Froula, et al., Phys. Rev. Lett. 98, 135001 (2007).

Measurements of Energy Transport Patterns in Solid Density Laser Plasma Interactions at Intensities of 5x1020 W cm-2, K. L. Lancaster, et al., Phys. Rev. Lett. 98, 125002 (2007).

Direct XUV Probing of Attosecond Electron Recollision, O. Smirnova, et al., Phys. Rev. Lett. 98, 123001 (2007).

Plasma Modulation of Harmonic Emission Spectra from Laser-Plasma Interactions, T. J. M. Boyd et al., Phys. Rev. Lett. 98, 105001 (2007).

Analysis of x-ray polarization to determine the three-dimensionally anisotropic velocity distributions of hot electrons in plasma produced by ultrahigh intensity lasers, Y. Inubushi, et al., Phys. Rev. E 75, 026401 (2007).

High-current fast electron beam propagation in a dielectric target, Ondrej Klimo, et al., Phys. Rev. E 75, 016403 (2007).

Control of Strong-Laser-Field Coupling to Electrons in Solid Targets with Wavelength-Scale Spheres, H. A. Sumeruk, et al., Phys. Rev. Lett. 98, 045001 (2007).

Filamentation of a relativistic short pulse laser in a plasma, N. Kumar, Phys. Scr. 73 659 (2006).

Evidence of photon acceleration by laser wake fields, C. D. Murphy, et al., Phys. Plasmas 13, 033108 (2006).

Dispersion and Transport of Energetic Particles due to the Interaction of Intense Laser Pulses with Overdense Plasmas, J. C. Adam, et al., Phys. Rev. Lett. 97, 205006 (2006).

Intensity-dependent resonance absorption in relativistic laser-plasma interaction, Hui Xu, et al., Phys. Plasmas 13, 123301 (2006).

Magnetic Reconnection and Plasma Dynamics in Two-Beam Laser-Solid Interactions, P. M. Nilson, et al., Phys. Rev. Lett. 97, 255001 (2006).

Dispersion and Transport of Energetic Particles due to the Interaction of Intense Laser Pulses with Overdense Plasmas, J. C. Adam, et al., Phys. Rev. Lett. 97, 205006 (2006).

Theory of high-order harmonic generation in relativistic laser interaction with overdense plasma, T. Baeva, et al., Phys. Rev. E 74, 046404 (2006).

Nonlinear collective effects in photon-photon and photon-plasma interactions, M. Marklund, et al., Rev. Mod. Phys. 78, 591 (2006).

Electron acceleration from contracting magnetic islands during reconnection, J. F. Drake, et al., Nature 443, 553 (5 October 2006).

Delay times and detector times for optical pulses traversing plasmas and negative refractive media, L. Nanda, et al., Phys. Rev. E 74, 036601 (2006).

Plasma density inside a femtosecond laser filament in air: Strong dependence on external focusing, F. Theberge, et al., Phys. Rev. E 74, 036406 (2006).

Femtosecond interferometry of propagation of a laminar ionization front in a gas, L. A. Gizzi, et al., Phys. Rev. E 74, 036403 (2006).

Measuring E and B Fields in Laser-Produced Plasmas with Monoenergetic Proton Radiography, C. K. Li, et al., Phys. Rev. Lett. 97, 135003 (2006).

Theory of Laser Acceleration of Light-Ion Beams from Interaction of Ultrahigh-Intensity Lasers with Layered Targets, B. J. Albright, et al., Phys. Rev. Lett. 97, 115002 (2006).

Plasma-induced spectral broadening of high-energy ultrashort laser pulses in a helium-filled multiple-pass cell, Muhammad Nurhuda, et al., JOSA B, Vol. 23, Issue 9, pp. 1946 (2006).

Heating Mechanisms in Short-Pulse Laser-Driven Cone Targets, R. J. Mason, Phys. Rev. Lett. 96, 035001 (2006).

Interaction of Light Filaments Generated by Femtosecond Laser Pulses in Air, Ting-Ting Xi, et al., Phys. Rev. Lett. 96, 025003 (2006).

Collisional Relaxation of Superthermal Electrons Generated by Relativistic Laser Pulses in Dense Plasma, A. J. Kemp, et al., Phys. Rev. Lett. 97, 235001 (2006).

Electronic temperature and density of the plasma produced by nanosecond ultraviolet laser ablation of LiF, F. J. Gordillo-Vázquez, et al., Appl. Phys. Lett. 86, 181501 (2005).

Review of progress in Fast Ignition M. Tabak et al., Phys. Plasmas 12, 057305 (2005).

Reaching the Nonlinear Regime of Raman Amplification of Ultrashort Laser Pulses, W. Cheng et al., Phys. Rev. Lett. 94, 045003 (2005).

Superradiant Linear Raman Amplification in Plasma Using a Chirped Pump Pulse, B. Ersfeld et al., Phys. Rev. Lett. 95, 165002 (2005).

Opacity Effect on Extreme Ultraviolet Radiation from Laser-Produced Tin Plasmas, N. Shinsuke Fujioka, et al., Phys. Rev. Lett. 95, 235004 (2005).

The plasma mirror—A subpicosecond optical switch for ultrahigh power lasers, B. Dromey et al., Review of Scientific Instruments 75, 645 (2004).

Multiple Filamentation of Terawatt Laser Pulses in Air, L. Bergé et al., Phys. Rev. Lett. 92, 225002 (2004).

Inverse bremsstrahlung stabilization of noise in the generation of ultrashort intense pulses by backward Raman amplification, Richard L. Berger et al., Phys. Plasmas 11, 1931 (2004).

Global Simulation for Laser-Driven MeV Electrons in Fast Ignition, C. Ren et al., Phys. Rev. Lett. 93, 185004 (2004).

Specular reflectivity of plasma mirrors as a function of intensity, pulse duration, and angle of incidence, Ch. Ziener, et al., Journal of Applied Physics 93, 768 (2003).

Plasma lens and wake experiments in Japan, A. Ogata et al., AIP Conf. Proc. 279, (2003).

Ionization of many-electron atoms by ultrafast laser pulses with peak intensities greater than 1019 W/cm2, K. Yamakawa et al., Phys. Rev. A 68, 065403 (2003).

Relativistic effects on intense laser beam propagation in plasma channels, B. Hafizi et al., Phys. Plasmas 10, 1483 (2003).

Three regimes of intense laser beam propagation in plasmas, A. Sharma et al., Phys. Plasmas 10(10), 4079 (2003).

Honeycomb Pattern Formation by Laser-Beam Filamentation in Atomic Sodium Vapor, R. S. Bennink, Phys. Rev. Lett. 88, 113901 (2002).

Generation of MeV electrons and positrons with femtosecond pulses from a table-top laser system, C. Gahn et al., Phys. Plasmas 9, 987 (2002).

Photon acceleration based on plasma, Peiyong Ji , Phys. Rev. E 64, 036501 (2001).

Anisotropic filamentation instability of intense laser beams in plasmas near the critical density, Z. -M. Sheng et al., Phys. Rev. E 64, 066409 (2001).

COHERENT INTERACTION OF THE RELATIVISTIC ELECTRON BEAM WITH THE PLASMA AND HIGH-GRADIENT ACCELERATING FIELDS GENERATIONK, G. Oksuzyan et al., Proceedings Particle Accelerators Conference, 3975 (2001).

Simulation of photon acceleration in a plasma wake, A. A. Solodov et al., Phys. Plasmas 6, 503 (1999).

Monomode Guiding of 1016W/cm2 Laser Pulses over 100 Rayleigh Lengths in Hollow Capillary Dielectric Tubes F. Dorchies et al., Phys. Rev. Lett. 82, 4655–4658 (1999).

High efficiency guiding of terawatt subpicosecond laser pulses in a capillary discharge plasma channel, D. Kaganovich et al., Phys. Rev. E 59, R4769 (1999).

Pair Production by Ultraintense Lasers, E. P. Liang et al., Phys. Rev. Lett. 81, 4887 (1998).

Pair Production by Ultraintense Lasers, Edison P. Liang , et al., Phys. Rev. Lett. 81, 4887 (1998).

The physics of the nonlinear optics of plasmas at relativistic intensities for short-pulse lasers, W. B. Mori, IEEE Trans. J. Quant. Elect., 1942 (1997).

Electron parametric instabilities of ultraintense laser pulses propagating in plasmas of arbitrary density, B. Quesnel et al., Phys. Plasmas 4, 3358 (1997).

The characterization of a high-density gas jet, A Behjat et al., Journal of Physics D: Applied Physics 30(20), 2872 (1997).

Spatial temporal theory of Raman forward scattering, C. D. Decker et al., Phys. Plasmas 3, 1360 (1996).

High-order above-threshold ionization of atomic hydrogen using intense, ultrashort laser pulses, G G Paulus et al., J. Phys. B: At. Mol. Opt. Phys. 29 No 7 L249-L256 (1996).

Raman forward scattering of short-pulse high-intensity lasers, W. Mori et al., Phys. Rev. Lett. 72, 1482 (1994).

Nonlinear Plasma Waves Resonantly Driven by Optimized Laser Pulse Trains D. Umstadter et al., Phys. Rev. Lett. 72, 1224 (1994).

Ignition and high gain with ultrapowerful lasers, M. Tabak et al., Phys. Plasmas 1, 1626 (1994).

Atoms in ultra-intense laser fields (review), K. Burnett et al., Journal of Physics B: Atomic, Molecular and Optical Physics 26(4), 561 (1993).

Stimulated Raman forward scattering and the relativistic modulational instability of light waves in rarefied plasma, C. J. McKinstrie, Physics of Fluids B: Plasma Physics 4, 2626 (1992).

Pair production in a strong wake field driven by an intense short laser pulse, V. I. Berezhiani et al., Phys. Rev. A 46, 6608 (1992).

Photon accelerator, S. Wilks et al., Phys. Rev. Lett. 62, 2600 (1989).

Tunneling ionization of noble gases in a high-intensity laser field, S. Augst et al., Phys. Rev. Lett. 63, 2212 (1989).

Above-threshold ionization in the long-wavelength limit, P. B. Corkum et al., Phys. Rev. Lett. 62, 1259 (1989).

Amplification of Magnetic Modes in Laser-Created Plasmas, J. P. Matte et al., Phys. Rev. Lett. 58, 2067 (1987).

Parametric instabilities of electromagnetic waves in plasmas, J. F. Drake, et al., The Physics of Fluids 17, 778 (1974).

Charged Particles in a Non-uniform Radio-frequency Field, H. A. H. BOOT et al., Nature 180, 1187 (1957).

Beam Plasma Interactions

ELECTRON BEAM-PLASMA INTERACTION AND THE RETURN-CURRENT FORMATION, M. Karlický, The Astrophysical Journal, 690(1), 189 (2009).

Filamentation Instability of Counterstreaming Laser-Driven Plasmas, W. Fox et al., Phys. Rev. Lett. 111, 225002 (2014).

Multidimensional electron beam-plasma instabilities in the relativistic regime, A. Bret et al., Physics of Plasmas 17, 120501 (2010).

Spatial and temporal evolution of filamentation instability in a current-carrying plasma, B. Mohammadhosseini al., Phys. Plasmas 17, 122303 (2010).

Observations of low-aberration plasma lens focusing of relativistic electron beams at the underdense threshold, M. C. Thompson et al., Phys. Plasmas 17, 073105 (2010)

Electric field generation by the electron beam filamentation instability: Filament size effects, M E Dieckmann et al., Phys. Scr. 81 015502 (2010).

Growth of filaments and saturation of the filamentation instability, M. Gedalin al., Phys. Plasmas 17, 032108 (2010).

Relativistic collisional current-filamentation instability and two-stream instability in dense plasma B. Hao et al., Phys. Rev. E 79, 046409 (2009).

Collisional effects on the relativistic current filamentation instability: With and without the space charge effect, B. Hao et al., Proccedings CLEAO/Pacific Rim Conference (2009).

Dynamics of electromagnetic two-stream interaction processes during longitudinal and transverse compression of an intense ion beam pulse propagating through background plasma, E.A. Startsev et al., Nuclear Instruments and Methods in Physics Research Section A 606(1-2), 42 (2009).

Enhanced Self-Focusing of an Ion Beam Pulse Propagating through a Background Plasma along a Solenoidal Magnetic Field, M.A. Dorf, et al., Phys. Rev. Lett. 103, 075003 (2009).

Three-dimensional filamentary structures of a relativistic electron beam in fast ignition plasmas, A. Karmakar et al., Phys. Plasmas 15, 120702 (2008).

Collision-Driven Negative-Energy Waves and the Weibel Instability of a Relativistic Electron Beam in a Quasineutral Plasma, A. Karmakar et al., Phys. Rev. Lett. 101, 255001 (2008).

Oblique instabilities in relativistic electron beam plasma interaction, A. Bret et al., Nuclear Instruments and Methods in Physics Research Section A 577(1-2), 317 (2007).

The saturation of the electron beam filamentation instability by the self-generated magnetic field and magnetic pressure gradient-driven electric field, M E Dieckmann, et al., arXiv.org > physics > arXiv:0810.5267.

Emittance Growth from Multiple Coulomb Scattering in a Plasma Wakefield Accelerator, N. Kirby et al., Proc. PAC 2007, p.3097.

Enhancement of the filamentation instability due to collisions, M. Fiore et al., 34th EPS Conference on Plasma Phys., ECA Vol.31F, O-2.011 (2007).

About the most unstable modes encountered in beam plasma interaction physics, A. Bret, et al., Laser and Particle Beams, 25, 117 (2007).

The Weibel instability in relativistic plasmas, A. Achterberg, et al., A&A 475, 1 (2007).

Numerical solution of the linear dispersion relation in a relativistic pair plasma, J Petri, et al., Plasma Phys. and Control. Fusion 49 297 (2007).

The chromo-weibel instability, M. Strickland, Braz. J. Phys. vol.37 no.2c Sao Paulo (2007).

Relativistic Weibel instability, P.H. Yoon, Phys. Plasmas 14, 024504 (2007).

Weibel instability with semirelativistic Maxwellian distribution function, S. Zaheer, Phys. Plasmas 14, 072106 (2007).

Weibel instability with non-Maxwellian distribution functions, S. Zaheer, Phys. Plasmas 14, 022108 (2007).

Between two stream and filamentation instabilities: Temperature and collisions effects, A. Bret et al., Laser and Particle Beams 24(01), 27 (2006).

Filamentation of a relativistic short pulse laser in a plasma, Naveen Kumar et al., Phys. Scr. 73 659 (2006).

A possible origin of magnetic fields in galaxies and clusters: strong magnetic fields at z 10 ?, Y. Fujita, et al., Monthly Notices of the Royal Astronomical Society: Letters, 372(4), 1851 (2006).

Baryon loading and the Weibel instability in gamma-ray bursts, M. Fiore, et al., Monthly Notices of the Royal Astronomical Society: Letters, 372(4), 1851 (2006).

Stabilization of the filamentation instability and the anisotropy of the background plasma, A. Bret et al., Phys. Plasmas 13, 022110 (2006).

A simple analytical model for the Weibel instability in the non-relativistic regime, A. Bret, Physics Letters A 359(1), 52 (2006).

Electron dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses, Youwei Tian, et al., Phys. Plasmas 13, 123106 (2006).

Focusing of laser-generated ion beams by a plasma cylinder: Similarity theory and the thick lens formula, S. Gordienko, et al., Phys. Plasmas 13, 063103 (2006).

Space-Charge Effects in the Current-Filamentation or Weibel Instability, M. Tzoufras, et al., Phys. Rev. Lett. 96, 105002 (2006).

Saturation mechanism of the Weibel instability in weakly magnetized plasmas, T.N. Kato, Phys. Plasmas 12, 080705 (2005).

Interplay of collisions with quasilinear growth rates of relativistic electron-beam-driven instabilities in a superdense plasma, C. Deutsch et al., Phys. Rev. E 72, 026402 (2005).

Transverse beam temperature effects on mixed Two-Stream/Filamentation unstable modes, A. Bret et al., Nuclear Instruments and Methods in Physics Research Section A, 544(1-2), 427 (2005).

Characterization of the initial filamentation of a relativistic electron beam passing through a plasma A. Bret et al., ECA Vol.29C, O-4.035 (2005).

Beam-Weibel filamentation instability in near-term and fast-ignition experiments, J.M. Hill et al., Phys. Plasmas 12, 082304 (2005).

Penetration of Intense Charged Particle Beams in the Outer Layers of Precompressed Thermonuclear Fuels, C. Deutsch, Transport Theory and Statistical Physics, Volume 34, Issue 3 - 5, 353 (2005).

Characterization of the Initial Filamentation of a Relativistic Electron Beam Passing through a Plasma, A. Bret et al., Phys. Rev. Lett. 94, 115002 (2005).

Particle Simulation of an Ultrarelativistic Two-Stream Instability, M. E. Dieckmann, Phys. Rev. Lett. 94, 155001 (2005).

Beam-Weibel filamentation instability in near-term and fast-ignition experiments, Jeremy Martin Hill et al., Phys. Plasmas 12, 082304 (2005).

Alfvén limit in fast ignition, J. R. Davies, Phys. Rev. E 69, 065402(R) (2004).

Collective electromagnetic modes for beam-plasma interaction in the whole k space, A. Bret et al., Phys. Rev. E 70, 046401 (2004).

Collective instabilities and beam-plasma interactions in intense heavy ion beams, R. C. Davidson et al., Phys. Rev. ST Accel. Beams 7, 114801 (2004).

Self-consistent Diffusive Lifetimes of Weibel Magnetic Fields in Gamma-Ray Bursts, C. H. Jaroschek et al., ApJ 616, 1065 (2004).

Observations of the filamentation of high-intensity laser-produced electron beams, M. S. Wei, Phys. Rev. E 70, 056412 (2004).

Eigenmodes and growth rates of relativistic current filamentation instability in a collisional plasma, M. Honda, Phys. Rev. E 69, 016401 (2004).

Cosmological Magnetic Field Generation by the Weibel Instability, R. Schlickeiser et al., ApJ 599 L57 (2003).

Anomalous Resistivity Resulting from MeV-Electron Transport in Overdense Plasma, Y. Sentoku, et al., Phys. Rev. Lett. 90, 155001 (2003).

Cosmological Magnetic Field Generation by the Weibel Instability, R. Schlickeiser et al., The Astrophysical Journal Letters, 599:L57L60 (2003).

Weibel instability in plasma produced by a superintense femtosecond laser pulse, V. P. Krainov, Journal of Experimental and Theoretical Physics, 96(3), 430 (2003).

Propagation Instabilities of High-Intensity Laser-Produced Electron Beams, M. Tatarakis et al., Phys. Rev. Lett. 90, 175001 (2003).

Weibel instability of relativistic electron flows in a laser produced plasma, A. Upadhyay et al., Plasma Phys. Control. Fusion 44, 2357 (2002).

Self-focusing of relativistic electron bunches in a dense plasma V.B. Krasovitskii et al., Pulsed Power Plasma Science, 1723 (2001).

Structure Formation and Tearing of an MeV Cylindrical Electron Beam in a Laser-Produced Plasma Toshihiro Taguchi et al., Phys. Rev. Lett. 86, 5055 - 5058 (2001).

Generation of a Small-Scale Quasi-Static Magnetic Field and Fast Particles during the Collision of Electron-Positron Plasma Clouds, Y. Kazimura, at al., ApJ 498 L183-L186, (1998).

Nonlinear filamentation instability driven by an inhomogeneous current in a collisionless plasma, F. Califano, at al., Phys. Rev. E 58, 7837 - 7845 (1998).

Color filamentation in ultrarelativistic heavy-ion collisions, S. Mrowczynski, Physics Letters B 393(1), 26 (1997).

Spatial structure and time evolution of the Weibel instability in collisionless inhomogeneous plasmas, F. Califano, at al., Phys. Rev. E 56, 963 (1997).

Ionization-induced refraction in recombination x-ray lasers, C D. Decker, et al., Phys. Plasmas 3, 414 (1996).

Nonlinear development of the weibel instability and magnetic field generation in collisionless plasmas, F. Pegoraro et al., Phys. Scr. T63 262 (1996).

Weibel instability in relativistically hot magnetized electronpositron plasmas, T.-Y. Brian Yang, et al., Phys. Fluids B 5, 3369 (1993).

Observations of a fast transverse instability in the PSR, D. Neuffer et al., Nucl. Instr. and Meth. in Phys. Res. A: 321, 1 (1992).

Electromagnetic instability of the ion-focused regime, David H. Whittum, Phys. Fluids B 4, 730 (1992).

Energy loss of heavy ions in a plasma target D. H. H. Hoffmann et al., Phys. Rev. A 42, 2313 (1990).

Kinetic theory of laser filamentation in plasmas, Eduardo M. Epperlein, Phys. Rev. Lett. 65, 2145–2148 (1990).

Propagation of a picosecond-duration, relativistic electron beam through hydrogen at atmospheric pressures, A. S. Fisher, et al., J. Appl. Phys. 64, 575 (1988).

Exact analytical model of the classical Weibel instability in a relativistic anisotropic plasma, Peter H. Yoon et al., Phys. Rev. A 35, 2718 (1987).

Propagation of Intense Beams in Plasma, R. B. Miller, An Introduction to the Physics of Intense Charged Particle Beams, 139 (1982).

Simple criteria for the absence of the beam-Weibel instability, J.R. Cary, et al., Phys. Fluids 24, 1818 (1981).

Filamentation instability of a self-focused relativistic electron beam, Z. Segalov, et al., Appl. Phys. Lett. 36, 812 (1980).

Filamentation Instability of Electron and Positron Colliding Beams in Storage Ring H. S. Uhm et al., Phys. Rev. Lett. 43, 914 (1979).

Filamentation Instability of Ion Beams Focused in Pellet-Fusion Reactors, R. F. Hubbard et al., Phys. Rev. Lett. 41, 866 (1978).

Filamentary Instability of a Relativistic Electron Beam, Kim Molvig, Phys. Rev. Lett. 35, 1504 (1975).

Filamentation of intense relativistic electron beams propagating in dense plasmas, C. A. Kapetanakos, Appl. Phys. Lett. 25, 484 (1974).

Two-Stream Instability Heating of Plasmas by Relativistic Electron Beams, L. E. Thoder et al., Phys. Rev. Lett. 30, 732 (1973).

Electron-Beam Filamentation in Strong Magnetic Fields, R. S. Bennink, Phys. Rev. Lett. 28, 1242 (1972).

Two-Stream Instability Heating of Plasmas by Relativistic Electron Beams L. E. Thode et al., Phys. Rev. Lett. 30, 732–735 (1973)

Electromagnetic Instabilities, Filamentation, and Focusing of Relativistic Electron Beams, Roswell Lee et al., Phys. Rev. Lett. 31, 1390 (1973).

Injection of a Relativistic Electron Beam into a Plasma , A.A. Rukhadze at al., JETP 34(1), 93 (1972).

Plasma Heating by High-Current Relativistic Electron Beams R. V. Lovelace et al., Phys. Rev. Lett. 27, 1256–1259 (1971)

Reverse Current Induced by Injection of a Relativistic Electron Beam into a Pinched Plasma, James L. Cox Jr at al., Physics of Fluids 13, 182 (1970).

Propagation of High Current Relativistic Electron Beams, D. A. Hammer, Phys. Fluids 13, 1831 (1970).

Electron Heating by Electron-Ion Beam Instabilities R. C. Davidson et al., Phys. Rev. Lett. 24, 579 (1970).

Nonlinear Evolution of a Two-Stream Instability K. V. Roberts et al., Phys. Rev. Lett. 19, 297 (1967).

Mechanism for Instability of Transverse Plasma Waves, B.D. Fried, Phys. Fluids 2, 337 (1959).

On the Motion of Cosmic Rays in Interstellar Space, Hannes Alfven, Phys. Rev. 55, 425 (1939).

Ions/protons Generation

Recombination of Protons Accelerated by a High Intensity High Contrast Laser, S. Tata et al., Phys. Rev. Lett. 121, 134801 (2018).

High energy protons generation by two sequential laser pulses, Xiaofeng Wang et al., Phys. Plasmas 22, 043106 (2015).

Nonlinear surface plasma wave induced target normal sheath acceleration of protons, C. S. Liu et al., Phys. Plasmas 22, 023105 (2015).

Review of laser-driven ion sources and their applications, H. Daido et al., Rep Prog Phys. 75(5), 056401 (2012).

A laser-driven nanosecond proton source for radiobiological studies, J. Bin et al., Appl. Phys. Lett. 101, 243701 (2012).

Ultrahigh energy proton generation in sequential radiation pressure and bubble regime, Xiaomei Zhang et al., Phys. Plasmas 17, 123102 (2010).

Radiation pressure acceleration of thin foils with circularly polarized laser pulses, A. Robinson et al., New J. Phys. 10 013021 (2010).

Radiation-Pressure Acceleration of Ion Beams Driven by Circularly Polarized Laser Pulses, A. Henig et al., Phys. Rev. Lett. 103, 245003 (2009).

Enhanced Laser-Driven Ion Acceleration in the Relativistic Transparency Regime, A. Henig, et al., Phys. Rev. Lett. 103, 045002 (2009).

Generation of GeV ion bunches from high-intensity laser-target interactions, J. Davis, et al., Phys. Plasmas 16, 023105 (2009).

Laser acceleration of monoenergetic protons in a self-organized double layer from thin foil, V K Tripathi, et al., Plasma Phys. Control. Fusion 51 024014 (2009).

Controlled Transport and Focusing of Laser-Accelerated Protons with Miniature Magnetic Devices, M. Schollmeier et al., Phys. Rev. Lett. 101, 055004 (2008).

Generating High-Current Monoenergetic Proton Beams by a CircularlyPolarized Laser Pulse in the Phase-StableAcceleration Regime, X. Q. Yan et al., Phys. Rev. Lett. 100, 135003 (2008).

Clinical ion beams: semi-analytical calculation of their quality, Taku Inaniwa et al., Phys. Med. Biol. 52, 7261 (2007).

Comparative spectra and efficiencies of ions laser-accelerated forward from the front and rear surfaces of thin solid foils, J. Fuchs, et al., Phys. Plasmas 14, 053105 (2007).

What will it take for laser driven proton accelerators to be applied to tumor therapy?, Ute Linz et al., Phys. Rev. ST Accel. Beams 10, 094801 (2007).

Proton Acceleration with High-Intensity Ultrahigh-Contrast Laser Pulses, T. Ceccotti et al., Phys. Rev. Lett. 99, 185002 (2007).

Spectral control in proton acceleration with multiple laser pulses, A P L Robinson et al. Plasma Phys. Control. Fusion 49 373 (2007).

REVIEW OF HIGH-BRIGHTNESS PROTON & ION ACCELERATION USING PULSED LASERS, J.Fuchs, et al., Proceedings of HB2006, p.319 (2006).

Laser acceleration of quasi-monoenergetic MeV ion beams, B. M. Hegelich, et al., Nature 439, 441 (26 January 2006).

Proton acceleration from microdroplet spray by weakly relativistic femtosecond laser pulses, Xiao-Yu Peng, et al., Phys. Rev. E 74, 036405 (2006).

Very small beam-size measurement by a reflective synchrotron radiation interferometer, T. Naito et al., Phys. Rev. ST Accel. Beams 9, 122802 (2006).

Present and Future of Hadrontherapy, Ugo Amaldi et al., AIP Conference Proceedings Volume 827, 248 (2006).

Reduction of proton acceleration in high-intensity laser interaction with solid two-layer targets, M.S. Wei, et al., Phys. Plasmas 13, 123101 (2006).

Quasi-mono-energetic ion acceleration from a homogeneous composite target by an intense laser pulse, T.T. Brantov, et al., Phys. Plasmas 13, 122705 (2006).

Enhanced proton beams from ultrathin targets driven by high contrast laser pulses, D. Neely, et al., Appl. Phys. Lett. 89, 021502 (2006).

Effect of Target Composition on Proton Energy Spectra in Ultraintense Laser-Solid Interactions, A. P. L Robinson, et al., Phys. Rev. Lett. 96, 035005 (2006).

Laser Acceleration of Ion Bunches at the Front Surface of Overdense Plasmas, A. Macchi et al., Phys. Rev. Lett. 94, 165003 (2005).

Application of ion beams in materials science of radioactive waste forms: focus on the performance of spent nuclear fuel, F. Garrido et al., Nucl. Instr. Meth. Phys. Res. B 240, 250 (2005).

Ultralow Emittance, Multi-MeV Proton Beams from a Laser Virtual-Cathode Plasma Accelerator, T. E. Cowan, et al., Phys. Rev. Lett. 92, 204801 (2004).

Accelerator-based ion beam analysis-an overview and future prospects, Klas G. Malmqvist , Radiation Physics and Chemistry 71, 817 (2004).

Nuclear waste disposal-pyrochlore (A2B2O7): Nuclear waste form for the immobilization of plutonium and "minor" actinides, Rodney C. Ewing et al., J. Appl. Phys., 95, 5949 (2004).

Ion beam irradiation in La[2]Zr[2]O[7]-Ce[2]Zr[2]O[7] pyrochlore, LIAN J. et al., Nucl. instrum. methods phys. res., Sect. B 218, 236 (2004).

Application of an RI-beam for cancer therapy: In-vivo verification of the ion-beam range by means of positron imaging, M. Kanazawa et al., Nuclear Physics A 701, 244 (2002)

Crystalline ion beams, T. Schatz et al., Nature 412, 717 (2001).

Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization, M Kramer et al., Phys. Med. Biol. 45 3299 (2000).

Historical review of electron beam ion sources, Evgeni D. Donets, Rev. Sci. Instrum. 69, 614 (1998).

Beam-optics study of the gantry beam delivery system for light-ion cancer therapy, Marius Pavlovic, Nucl. instrum. methods phys. res. A, 399, 439 (1997).

Zircon: A host-phase for the disposal of weapons plutonium, R.C. Ewing et al., J. Mater. Res. 10(2), 243 (1995).

Instrumentation for treatment of cancer using proton and light-ion beams, W. T. Chu et al., Rev. Sci. Instrum. 64(8), 2055 (1993)

Production of intense radioactive ion beams using two accelerators, D. Darquennes et al., Phys. Rev. C 42, R804 - R806 (1990).

The potential of MeV ion beam techniques in museum science, J. R. Bird, Nucl. Instr. Meth. Phys. Res. B 14, 156 (1986).

Application of ion beam techniques to solid state physics and technology of nuclear materials, Hj. Matzke , Journal of Nuclear Materials 136, 143 (1985).

Heavy-Ion Linear Accelerator, E. L. Hubbard et al., Rev. Sci. Instrum. 32, 621 (1961).

Dielectric Wakefields

Alternating-Phase Focusing for Dielectric-Laser Acceleration, U. Niedermayer et al., Phys. Rev. Lett. 121, 214801 (2018).

Experimental Demonstration of Wakefield Acceleration in a Tunable Dielectric Loaded Accelerating Structure, C. Jing et al., Phys. Rev. Lett. 106, 164802 (2011).

Observation of Narrow-Band Terahertz Coherent Cherenkov Radiation from a Cylindrical Dielectric-Lined Waveguide, A. M. Cook et al., Phys. Rev. Lett. 103, 095003 (2009).

Experimental observation of constructive superposition of wakefields generated by electron bunches in a dielectric-lined waveguide, S. V. Shchelkunov et al., Phys. Rev. ST Accel. Beams 9, 011301 (2006).

Observation of Enhanced Transformer Ratio in Collinear Wakefield Acceleration, C. Jing, et al., Phys. Rev. Lett. 98, 144801 (2007).

Side-coupled slab-symmetric structure for high-gradient acceleration using terahertz power, R. B. Yoder, et al., Phys. Rev. ST Accel. Beams 8, 111301 (2005).

Wake field in dielectric acceleration structures, L. Schachter, et al., Phys. Rev. E 68, 036502 (2003).

A Cerenkov source of high-power picosecond pulsed microwaves, T. B. Shang et al., IEEE Trans. Plasma Sci. 26(3), 787 (1998).

Electromagnetic wake fields and beam stability in slab-symmetric dielectric structures, A. Tremaine et al., Phys. Rev. E 56, 7204 (1997).

Numerical simulations of intense charged-particle beam propagation in a dielectric wake-field accelerator, W. Gai, et al., Phys. Rev. E 55, 3481 (1997).

Three-dimensional nonlinear analysis of the Cherenkov Maser, H. P. Freund, et al., Nucl. Instr. Meth. in Phys. Res. A 296(1-3), 462 (1990).

Longitudinal- and transverse-wake-field effects in dielectric structures, M. Rosing, et al., Phys. Rev. D 42, 1829 (1990).

Experimental Demonstration of Wake-Field Effects in Dielectric Structures, W. Gai, et al., Phys. Rev. Lett. 61, 2756 (1988).

Fusion Plasmas

Cumulative effect of the Weibel-type instabilities in symmetric counterstreaming plasmas with kappa anisotropies, M. Lazar et al., Phys. Plasmas 15, 042103 (2008).

Very small beam-size measurement by a reflective synchrotron radiation interferometer, T. Naito et al., Phys. Rev. ST Accel. Beams 9, 122802 (2006).

Simulation and Observation of the Long-Time Evolution of the Longitudinal Instability in a Cooler Storage Ring, O. Boine-Frankenheim, et al., Phys. Plasmas 6, 1690 (1999).

The physics of magnetic fusion reactors John Sheffield, Rev. Mod. Phys. 66, 1015–1103 (1994).

Theory of the tokamak beta limit and implications for second stability, J.J. Ramos, Physics of Fluids B 3(8), 2247 (1991).

A semi-empirical scaling law for the β limit in tokamaks, F. Troyon, et al., Physics Letters A, 110(1), 29 (1985).

The Stellarator Concept, L. Spitzer, Physics of Fluids 1(4), 253 (1958).

Some criteria for a useful thermonuclear reactor (pdf), J.M. Lawson et al., UK Atomic energy Authority, 1957.

Inertial Confinement

Progress and prospect of fast ignition of ICF targets, J Badziak, et al., Plasma Phys. Control. Fusion 49 B651-B666 (2007).

Fluid and kinetic simulation of inertial confinement fusion plasmas, S. Atzeni, et al., Computer Physics Communications 169 153159 (2005).

High current transport experiment for heavy ion inertial fusion, L. R. Prost, et al., Phys. Rev. ST Accel. Beams 8, 020101 (2005).

Scientific issues in future induction linac accelerators for heavy-ion fusion, C.M. Celata, Nucl. Inst. Meth. Phys. Res. A 544(1-2), 142 (2005).

News and Views: Fast track to fusion energy Toshihiro Taguchi et al., Nature 412, 775-776 (23 August 2001).

Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition, R. Kodama, et al., Nature 412, 798 (2001). Ignition and high gain with ultrapowerful lasers, M. Tabak, et al., Phys. Plasmas 1, 1626 (1994).

Weibel instability in the spherical corona of a laser fusion target, M. A. True, Phys. Fluids 28, 2597 (1985).

Plasma Physics

Helicon high-density plasma sources: physics and applications, S. Shinohara, Advances in Physics: X 3(1), 1420424 (2018).

A high power, high density helicon discharge for the plasma wakefield accelerator experiment AWAKE, B. Buttenschön, at al., Plasma Physics and Controlled Fusion, 60(7), 075005 (2018).

On Ponderomotive Effects Induced by Alfvén Waves in Inhomogeneous 2.5D MHD Plasmas, J. O. Thurgood et al., Solar Physics 288(1), 205 (2013).

Fundamentals of collisionless shocks for astrophysical application, 2. Relativistic shocks, A. M. Bykov et al., Astrophys Rev, 19:42 (2011).

Strong-field ionization of lithium M. Schuricke et al., Phys. Rev. A 83, 023413 (2011).

Centrifugal Separation and Equilibration Dynamics in an Electron-Antiproton Plasma, G. B. Andresen et al., Phys. Rev. Lett. 106, 145001 (2011).

Ultrahigh energy proton generation in sequential radiation pressure and bubble regime, Xiaomei Zhang et al., Phys. Plasmas 17, 123102 (2010).

Electrostatic Breakup in a Misty Plasma, M. Coppins, Phys. Rev. Lett. 104, 065003 (2010).

Discharge lamps for Rb atomic clocks: The role of rf-power Fathi, G. et al., Proccedings Frequency Control Symposium, 2009 Joint with the 22nd European Frequency and Time forum. IEEE International p. 994.

Electric Microfield Distributions in Alkali Plasmas with Account of the Ion Structure S. P. Sadykova et al., Contributions to Plasma Physics 49(6), 388, (2009).

Multi-Photon Ionization of Lithium M. Schuricke et al., Journal of Physics: Conference Series 194, 032031 (2009).

Book Review:Fundamentals of Plasma Physics, Paul M Bellan, P J Cargill, Plasma Phys. Control. Fusion 49 197 (2007).

Antimatter Plasmas in a Multipole Trap for Antihydrogen, G. Andresen, et al., Phys. Rev. Lett. 98, 023402 (2007).

Dynamics of Spin-1/2 Quantum Plasmas, M. Marklund, et al., Phys. Rev. Lett. 98, 025001 (2007).

Very small beam-size measurement by a reflective synchrotron radiation interferometer, T. Naito et al., Phys. Rev. ST Accel. Beams 9, 122802 (2006).

Wave-breaking limits for relativistic electrostatic waves in a one-dimensional warm plasma, R. M. G. M. Trines, et al., Phys. Plasmas 13, 123102 (2006).

Estimation of higher-order contribution to viscosity of hydrogen plasmas including electronically excited states, G. Singh, et al., Phys. Plasmas 13, 122309 (2006).

Experimental astrophysics with high power lasers and Z pinches, B.A. Remington, et al., Rev. Mod. Phys. 78, 755 (2006).

Quasistatic capillary discharge plasma model, L. C. Steinhauer, et al., Phys. Rev. ST Accel. Beams 9, 081301 (2006).

Experimental Confirmation of Stable, Small-Debye-Length, Pure-Electron-Plasma Equilibria in a Stellarator, J. P. Kremer, et al., Phys. Rev. Lett. 97, 095003 (2006).

Space-Charge Effects in the Current-Filamentation or Weibel Instability, M. Tzoufras, et al., Phys. Rev. Lett. 96, 105002 (2006).

Liquid-State Properties of a One-Component Plasma, J. Daligault, Phys. Rev. Lett. 96, 065003 (2006).

Warm wave breaking of nonlinear plasma waves with arbitrary phase velocities, C. B. Schroeder et al., Phys. Rev. E 72, 055401(R) (2005).

Collisionless Reconnection in an Electron-Positron Plasma, N. Bessho, et al., Phys. Rev. Lett. 95, 245001 (2005).

Laser-Induced Fluorescence Measurement of the Ion-Energy-Distribution Function in a Collisionless Reconnection Experiment, A. Stark, et al., Phys. Rev. Lett. 95, 235005 (2005).

Two-photon ionization using elliptically polarized light R. Kundliya et al., Phys. Rev. A 64, 043404 (2001).

Exact field ionization rates in the barrier-suppression regime from numerical time-dependent Schrödinger-equation calculations, D. Bauer et al., Phys. Rev. A 59, 569 (1999).

Photoelectron initial conditions for tunneling ionization in a linearly polarized laser, S. J. McNaught et al., Phys. Rev. A 58, 1399 (1998).

Helicons-the early years F. F. Chen et al., IEEE Trans. Plasma Sci. 25, 1229 (1997).

The anomalous skin effect in gas discharge plasmas V I Kolobov and D J Economou, Plasma Sources Sci. Technol. 6 R1 (1997).

Laser-induced dissociation and ionization of lithium vapour M Akram et al., J. Phys. B: At. Mol. Opt. Phys. 29(10), L381 (1996).

Ionization-induced refraction in recombination x-ray lasers, Chris D. Decker et al., Phys. Plasmas 3, 414 (1996).

Shift and width of the Hα line of hydrogen in dense plasmas, St. Boddeker, et al., Phys. Rev. E 47, 2785 (1993).

Ionization of lithium vapor byCW quasiresonant laser light M. Schuricke et al., ZEITSCHRIFT FÜR PHYSIK D ATOMS, MOLECULES AND CLUSTERS 22(2), 463, (1992).

Defocusing effects of a picosecond terawatt laser pulse in an underdense plasma, T. Auguste et al., Optics Communications 8(2), 145 (1992).

Laser ionization of noble gases by Coulomb-barrier suppression, S. Augst et al., JOSA B, Vol. 8, Issue 4, pp. 858 (1991).

Multiphoton ionization of atoms, G Mainfray al., Rep. Prog. Phys. 54 1333 (1991).

Refraction effects associated with multiphoton ionization and ultrashort-pulse laser propagation in plasma waveguides, R. Rankin et al., Optics Letters, Vol. 16, Issue 11, pp. 835 (1991).

Plasma production in a Cs vapour via single-photon ionisation with excimer laser light W. Gawlik et al., Optics Communications 68(5), 354 (1988).

Multiphoton ionization of the noble gases by an intense 1014-W/cm2 dye laser, M. D. Perry et al., Phys. Rev. A 37, 747 (1988).

Nonresonant multiphoton ionization of noble gases: Theory and experiment, M. D. Perry et al., Phys. Rev. Lett. 60, 1270 (1988).

Ratio of Balmer line to spectrally adjacent emission, from the afterglow of a Z-pinch discharge in hydrogen, W M Jones, et al., Plasma Phys. Control. Fusion 29 1045 (1987).

Multiply charged ions induced by multiphoton absorption processes in rare-gas atoms at 1.064microns, A L'Huillier, J. Phys. B: At. Mol. Phys. 16 1363 (1983).

Nonresonant Multiphoton Ionization of Atoms, J. Morellec et al., Advances in Atomic and Molecular Physics 18, Pages 97 (1982).

Green's-function approach to nonresonance multiphoton absorption in the alkali-metal atoms, E. J. McGuire, Phys. Rev. A 23, 186 (1981).

Absolute determination of the photoionisation cross section for ground-state atomic caesium in the vacuum ultraviolet, K T V Grattan et al., J. Phys. B: At. Mol. Phys. 13 2931 (1980).

Absolute measurement of the photoionization cross section for ground-state cesium atoms, T. B. Cook et al., Phys. Rev. A 15, 1526 (1977).

End-loss processes from mirror machines, D. E. Baldwin et al., Rev. Mod. Phys. 49, 317–339 (1977).

Resonance shifts in the multiphoton ionization of cesium atoms, J. Morellec et al., Phys. Rev. A 14, 300 (1976).

Electrical conductivity of highly ionized dense hydrogen plasma. I. Electrical measurements and diagnostics, R Radtke et al., J. Phys. D: Appl. Phys. 9, 1131 (1976).

Electrical conductivity of highly ionized dense hydrogen plasma. II. Comparison of experiment and theory, AK Gunther et al., J. Phys. D: Appl. Phys. 9 1139 (1976).

Two-photon ionization with spin-orbit coupling P Lambropoulos et al., J. Phys. B: At. Mol. Phys. 9 587 (1976).

Two-photon ionization measurements on atomic caesium by means of an argon ion laser E H A Granneman et al., J. Phys. B: At. Mol. Phys. 8 1617 (1975).

Measurement of electron-ion recombination rate of a dense high-temperature cesium plasma, Che Jen Chen et al., J. Appl. Phys. 44, 3052 (1973).

Effect of Light Polarization on Multiphoton Ionization of Atoms P Lambropoulos et al., Phys. Rev. Lett. 28, 585–587 (1972).

Photoabsorption by Ground-State Alkali-Metal Atoms, Jon C. Weisheit , Phys. Rev. A 5, 1621–1630 (1972).

Photoabsorption by Ground-State Alkali-Metal Atoms, Jon C. Weisheit et al., Phys. Rev. A 5, 1621 (1972).

Wave-Mechanical" Model for the Nonadiabatic Loss of Particles from Magnetic-Mirror Traps, Ram K. Varma, Phys. Rev. Lett. 26, 417 (1971).

Noise Spectrum Received by an Antenna in a Plasma J. A. Fejer et al., RADIO SCIENCE, VOL. 4, NO. 8, PP. 721-728, (1969).

The Photoionization Absorption Continua for Alkali Metal Vapours, G. V. Marr et al., Proc. R. Soc. Lond. A vol. 304 no. 1477, 233 (1968).

Observation of Plasma Wave Echoes, T. M. O'Neil and R. W. Gould, Phys. Fluids 11, 1147 (1968).

Temporal and Spatial Plasma Wave Echoes, T. M. O'Neil and R. W. Gould, Phys. Fluids 11, 134 (1968).

Multi-photon absorption in monatomic gases, V M Morton, Proc. Phys. Soc. 92 301 (1967).

Plasma Wave Echo, R. W. Gould et al., Phys. Rev. Lett. 19, 219 (1967).

Collisionless Damping of Large-Amplitude Plasma Waves, A. Wong, et al., Phys. Rev. Lett. 19, 775 (1967).

Radiative recombination in cesium, D. W. Norcross et al., Journal of Quantitative Spectroscopy and Radiative Transfer 6(3), 277 (1966).

Electron Impact Ionization Cross-Section Data for Atoms, Atomic Ions, and Diatomic Molecules: I. Experimental Data, L. J. KIEFFER et al., Rev. Mod. Phys. 38, 1 (1966).

Dispersion of Electron Plasma Waves, J. H. Malmberg, et al., Phys. Rev. Lett. 17,175 (1966).

Observation of Plasma Oscillations, G. Van Hoven, Phys. Rev. Lett. 17, 169 (1966).

Collisionless Damping of Nonlinear Plasma Oscillations, T. O'Neil, Physics of Fluids 8, 12, 2255 (1964).

Collisionless Damping of Electrostatic Plasma Waves, J. H. Malmberg, et al., Phys. Rev. Lett. 13,184 (1964).

Light as a Plasma Probe M. Baranger et al., Phys. Rev. 123, 25 (1961).

Experimental Study of Alfven-Wave Properties, J. M. Wilcox, Physics of Fluids 3, 15 (1960).

Electric Field Distributions in an Ionized Gas M. Baranger et al., Phys. Rev. 115, 521 (1959).

Nonlinear Electron Oscillations in a Cold Plasma, J. M. Dawson, Phys. Rev. 113, 383 (1959).

Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution, E. S. Weibel, Phys. Rev. Lett. 2, 83 (1959).

Instability, Turbulence, and Conductivity in Current-Carrying Plasma, O. Buneman, Phys. Rev. Lett. 1, 8 (1958).

Exact Nonlinear Plasma Oscillations, I. B. Bernstein, et al., Phys. Rev. 108, 546 (1957).

Hydromagnetic Dynamo Theory, W. M. Elsasser, Rev. Mod. Phys. 28, 135 (1956).

Transmission of Positrons and Electrons, H. H. Seliger, Phys. Rev. 100, 1029 (1955).

Self-Focusing Streams, W. H. Bennett, Phys. Rev. 98, 1584 (1955).

Passage of Charged Particles through Plasma, J. Neufeld, et al., Phys. Rev. 98, 1632 (1955).

The Photo-Ionization Cross Section of Lithium A L Stewart, Proc. Phys. Soc. A 67 917 (1954).

The Excitation of Plasma Oscillations, Duncan H. Looney al., Phys. Rev. 93, 965 (1954).

Transport Phenomena in a Completely Ionized Gas, L. Spitzer, Jr., et al, Phys. Rev. 89, 977 (1953).

Spin Echoes, E. L. Hahn, Phys. Rev. 80, 580 (1950).

Magneto-Hydrodynamic Shocks, F. De Hoffmann and E. Teller, Phys. Rev. 80, 692 (1950).

Experimental Investigations of Magneto-Hydrodynamic Waves, S. Lundquist, Phys. Rev. 76, 1805 (1949).

Theory of Plasma Oscillations. A. Origin of Medium-Like Behavior, D. Bohm and P. Gross, Phys. Rev. 75, 1851 (1949).

Electron Scattering and Plasma Oscillations, Harrison J. Merrill and Harold W. Webb , Phys. Rev. 55, 1191 (1939).

Oscillations in Ionized Gases, L. Tonks and I Langmuir, Phys. Rev. 33, 195 (1929).

Radiation Generation

Electron beam dynamics and self-cooling up to PeV level due to betatron radiation in plasma-based accelerators, A. Deng et al., Phys. Rev. ST Accel. Beams 15, 081303 (2012).

A simple equilibrium theoretical model and predictions for a continuous wave exciplex pumped alkali laser, D. L. Carroll et al., J. Phys. B: At. Mol. Opt. Phys. 46 025402 (2013).

Technology for Attosecond Science F. Frank et al., Rev. Sci. Instrum. 83, 071101 (2012).

5.5-7.5 MeV Proton Generation by a Moderate-Intensity Ultrashort-Pulse Laser Interaction with H2O Nanowire Targets, C. B. Schroeder et al., Phys. Rev. Lett. 106, 134801 (2011).

A compact synchrotron radiation source driven by a laser-plasma wakefield accelerator, H.-P. Schlenvoigt, et al., Nature Physics 4, 130 (2008).

Vlasov formalism of the laser driven ion channel x-ray laser, C S Liu et al. 2007 Plasma Phys. Control. Fusion 49 325 (2007).

522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality, T. H. Loftus, et al., Optics Letters, 32(4), 349 (2007).

Efficient isolated attosecond pulse generation from a multi-cycle two-color laser field, Wei Cao, et al., Optics Express, 15(2), 530 (2007).

Unified Microscopic-Macroscopic Formulation of High-Order Difference-Frequency Mixing in Plasmas, Oren Cohen, et al., Phys. Rev. Lett. 98, 043903 (2007).

Unified Microscopic-Macroscopic Formulation of High-Order Difference-Frequency Mixing in Plasmas, Oren Cohen, et al., Phys. Rev. Lett. 98, 043903 (2007).

Argon plasma jet continuum emission investigation by using different spectroscopic methods, J Dgheim, Plasma Sources Sci. Technol. 16 211 (2007).

Let there be white light: supercontinuum generation by ultrashort laser pulses, A M Zheltikov, Phys.-Usp. 49 605 (2006).

Supercontinuum generation in photonic crystal fiber, J. M. Dudley, et al., Rev. Mod. Phys. 78, 1135 (2006).

Exotic radiation from a photonic crystal excited by an ultrarelativistic electron beam, N. Horiuchi, et al., Phys. Rev. E 74, 056601 (2006).

Widely tunable soliton frequency shifting of few-cycle laser pulses, N. Ishii, et al., Phys. Rev. E 74, 036617 (2006).

Comparison of Smith-Purcell radiation models and criteria for their verification, D. V. Karlovets, et al., Phys. Rev. ST Accel. Beams 9, 080701 (2006).

End-pumped continuous-wave alkali vapor lasers: experiment, model, and power scaling, R.J. Beach et al., Journal of the Optical Society of America B 21(12), 2151 (2004).

Coherent emission of light by thermal sources, J.J. Greffet et al., Nature 416, 61 (2002).

Synchrotron radiation from electron beams in plasma-focusing channels, E. Esarey et al., Phys. Rev. E 65, 056505 (2002).

The NRL Autoaccelerator Concept, Generation of terahertz pulses by photoionization of electrically biased air, T. Löffler et al., Appl. Phys. Lett. 77, 453 (2000).

Generation of tunable far-infrared radiation by the interaction of a superluminous ionizing front with an electrically biased photoconductor, D. Hashimshony et al., Applied Physics Letters, 74(12), 1669 (1999).

On the coherent radiation of an electron bunch moving in an arc of a circle, E. L. Saldin et al., Nucl. Instr. Meth. Phys. Res. A, 398(2-3) (1997).

Radiation from Cerenkov Wakes in a Magnetized Plasma, J. Yoshii, et al., Phys. Rev. Lett. 79, 4194 (1997).

Conversion of dc Fields in a Capacitor Array to Radiation by a Relativistic Ionization Front, W. B. Mori, et al., Phys. Rev. Lett. 74, 542 (1995).

Ultra-fast fiber laser systems based on SESAM technology: new horizons and applications, Oleg Okhotnikov, et al., New J. Phys. 6 177 (1994).

Compact laser-diode-based femtosecond sources, C T A Brown, et al., New J. Phys. 6 175 (1994).

Picosecond pulse sources with multi-GHz repetition rates and high output power, R Paschotta, et al., New J. Phys. 6 174 (1994).

Three-dimensional theory of an ion-ripple laser, Zhi-Min Dai, et al., Phys. Rev. E 49, 745 (1994).

The partial dielectric guiding effects in an ion-ripple laser, Zhi-Min Dai, et al., J. Phys. D: Appl. Phys. 27 1114 (1994).

Ion-ripple laser, K. R. Chen, et al., Phys. Rev. Lett. 68, 29 (1992).

Frequency upconversion of electromagnetic radiation upon transmission into an ionization front, R. Savage, et al., Phys. Rev. Lett. 68, 946 (1992).

Generation of tunable radiation using an underdense ionization front, W.B. Mori, Phys. Rev. A 44, 5118 (1991).

Modulation instability induced by cross-phase modulation Govind P. Agrawal , Phys. Rev. Lett. 59, 880 (1987).

Interaction of electromagnetic waves with a moving ionization fron, M. Lamper et al., Phys. Fluids 21, 42 (1978).

X-rays Generation

High-Brilliance Betatron γ-Ray Source Powered by Laser-Accelerated Electrons, J. Ferri, et al., Phys. Rev. Lett. 120, 254802 (2018).

γ-Ray Beams with Large Orbital Angular Momentum via Nonlinear Compton Scattering with Radiation Reaction, Yue-Yue Chen, et al., Phys. Rev. Lett. 121, 074801 (2018).

Compact tunable Compton x-ray source from laser-plasma accelerator and plasma mirror, Hai-En Tsai et al., Phys. Plasmas 22, 023106 (2015).

Ultrahigh Brilliance Multi-MeV γ-Ray Beams from Nonlinear Relativistic Thomson Scattering, G. Sarri et al., Phys. Rev. Lett. 113, 224801 (2014).

Using the Beam-Echo Effect for Generation of Short-Wavelength Radiation, G. Stupakov, Phys. Rev. Lett. 102, 074801 (2009).

Laser-Driven Coherent Betatron Oscillation in a Laser-Wakefield Cavity, K. Nemeth et al., Phys. Rev. Lett. 100, 095002 (2008).

Demonstration of the ultrafast nature of laser produced betatron radiation, K. Ta Phuoc, Phys. Plasmas 15, 063102 (2008).

Demonstration of the ultrafast nature of laser produced betatron radiation, K. Ta Phuoc, Phys. Plasmas 14, 080701 (2007).

Subnanometer-Scale Measurements of the Interaction of Ultrafast Soft X-Ray Free-Electron-Laser Pulses with Matter, Stefan P. Hau-Riege et al., Phys. Rev. Lett. 98, 145502 (2007).

Compression of powerful x-ray pulses to attosecond durations by stimulated Raman backscattering in plasmas, V. M. Malkin, et al., Phys. Rev. E 75, 026404 (2007).

Ultrafast x-ray pulses emitted from a liquid mercury laser target, C. Reich, et al., Optics Letters, 32(4), 427 (2007).

Observation of the Second Harmonic in Thomson Scattering from Relativistic Electrons, M. Babzien, et al., Phys. Rev. Lett. 96, 054802 (2006).

Observation of the Second Harmonic in Thomson Scattering from Relativistic Electrons, M. Babzien et al., Phys. Rev. Lett. 96, 054802 (2006).

Radiation efficiency of water-window Cherenkov sources using atomic-shell resonances, A. E. Kaplan, et al., Appl. Phys. Lett. 86, 024107 (2005).

Table-top water window transmission x-ray microscopy: Review of the key issues, and conceptual design of an instrument for biology, J. F. Adam, Rev. Sci. Instrum. 76, 091301 (2005).

Tutorial on fundamentals of radiation physics: interactions of photons with matter, R.H. Pratt, Radiation Physics and Chemistry 70(4–5), 595 (2004).

A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam, Ph. Zeitoun, Nature 431, 426 (2004).

X-ray generation in an ion channel, I. Kostyukov et al., Phys. Plasmas 10, 4818 (2003)

Coherent control of pulsed X-ray beams, M. F. DeCamp, Nature 413, 825 (2001).

Terahertz Radiation Generation

Stimulated Excitation of an Optical Cavity by a Multibunch Electron Beam via Coherent-Diffraction-Radiation Process, Yosuke Honda et al., Phys. Rev. Lett. 121, 184801 (2018).

Terahertz plasmonic Bessel beamformer, Y. Monnai et al., Appl. Phys. Lett. 106, 021101 (2015).

Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields, Ki-Yong Kim, et al., Optics Express, Vol. 15, Issue 8, pp. 4577 (2007).

Terahertz quantum-cascade lasers, Benjamin S. Williams, Nature Photonics 1, 517 (2007).

Generation of radially polarized terahertz pulses via velocity-mismatched optical rectification, Guoqing Chang, et al., Optics Letters, 32(4), 433 (2007).

522 W average power, spectrally beam-combined fiber laser with near-diffraction-limited beam quality, T. H. Loftus, et al., Optics Letters, 32(4), 349 (2007).

Powerful terahertz emission from laser wakefields in inhomogeneous magnetized plasmas, Hui-Chun Wu, et al., Phys. Rev. E 75, 016407 (2007).

Terahertz Radiation from a Nonlinear Slab Traversed by an Optical Pulse, N. N. Zinov'ev, et al., Phys. Rev. Lett. 98, 044801 (2007).

Measurement of submilliwatt, picosecond terahertz emission from a femtosecond-laser-pumped solid-state dc to ac radiation converter based on a ZnSe crystal, N. Yugami et al., Rev. Sci. Instrum. 77, 116102 (2006).

Coherent Control of THz Wave Generation in Ambient Air, Xu Xie et al., Phys. Rev. Lett. 96, 075005 (2006).

Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment, Arno Schneider, et al., JOSA B, Vol. 23, Issue 9, 1822 (2006).

Coherent Control of THz Wave Generation in Ambient Air, Xu Xie, et al., Phys. Rev. Lett. 96, 075005 (2006).

Coherent THz Synchrotron Radiation from a Storage Ring with High-Frequency RF System, F. Wang, et al. Phys. Rev. Lett. 96, 064801 (2006).

Femtosecond Terahertz Radiation from Femtoslicing at BESSY, K. Holldack, et al., Phys. Rev. Lett. 96, 054801 (2006).
High-power terahertz radiation from relativistic electrons, GL Carr et al., Nature 420, 1175 (2002).

A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling, A. Nahata, et al., Appl. Phys. Lett. 69(16), 2321 (1996).

Short-pulse terahertz radiation from high-intensity-laser-produced plasmas H. Hamster et al., Phys. Rev. E 49, 671 (1994).

Subpicosecond, electromagnetic pulses from intense laser-plasma interaction, H. Hamster et al., Phys. Rev. Lett. 71, 2725 (1993).

Applications of electrical noise M. S. Gupta , Proc. IEEE 63, 996 (1975).

Particle Beams

Direct Observation of Incoherent Cherenkov Diffraction Radiation in the Visible Range, R. Kieffer, et al., Phys. Rev. Lett. 121, 054802 (2018).

First Six Dimensional Phase Space Measurement of an Accelerator Beam, Brandon Cathey, et al., Phys. Rev. Lett. 121, 064804 (2018).

Tilted Electron Pulses, D. Ehberger, et al., Phys. Rev. Lett. 121, 094801 (2018).

Theoretical analysis and simulation study of the deep overcompression mode of velocity bunching for a comblike electron bunch train, Dan Wang et al., Phys. Rev. Accel. Beams 21, 024403 (2018).

Halo formation and emittance growth in the transport of spherically symmetric mismatched bunched beams, T. M. Corrêa da Silva et al., Phys. Plasmas 22, 023102 (2015).

Holographic Generation of Highly Twisted Electron Beams, V. Grillo et al., Phys. Rev. Lett. 114, 034801 (2015).

Beam by design: Laser manipulation of electrons in modern accelerators, E. Hemsing et al., Rev. Mod. Phys. 86, 897 (2014).

Beating the shot-noise limit A. Gover et al., Nature Physics (2012).

First Observation of the Exchange of Transverse and Longitudinal Emittances J. Ruan et al., Phys. Rev. Lett. 106, 244801 (2011).

Nonlinear Longitudinal Space Charge Oscillations in Relativistic Electron Beams P. Musumeci et al., Phys. Rev. Lett. 106, 184801 (2011).

Analysis of shot noise suppression for electron beams D. Ratner et al., Phys. Rev. ST Accel. Beams 14, 060710 (2011).

Tunable Subpicosecond Electron-Bunch-Train Generation Using a Transverse-To-Longitudinal Phase-Space Exchange Technique, Y.-E Sunet al., Phys. Rev. Lett. 105, 234801 (2010).

Optical frequency shot-noise suppression in electron beams: Three-dimensional analysis A. Nause et al., J. Appl. Phys. 107, 103101 (2010).

Experimental Demonstration of Emittance Compensation with Velocity Bunching, M. Ferrario et al., Phys. Rev. Lett. 104, 054801 (2010).

Collective-Interaction Control and Reduction of Optical Frequency Shot Noise in Charged-Particle Beams A. Gover et al., Phys. Rev. Lett. 102, 154801 (2009).

Observation of Multiple Volume Reflection of Ultrarelativistic Protons by a Sequence of Several Bent Silicon Crystals, W. Scandale et al., Phys. Rev. Lett. 102, 084801 (2009).

Approximate analytical solutions for continuously focused beams and single-species plasmas in thermal equilibrium, Edward A. Startsev et al., Phys. Plasmas 15, 043101 (2008).

Imaging of high-energy electron beam profile with optical diffraction radiation D Xiang et al., Phys. Rev. ST Accel. Beams 10, 062801 (2007).

Velocity bunching of high-brightness electron beams, M. Ferrario, et al., Phys. Rev. ST Accel. Beams 8, 014401 (2005).

Beam control and matching for the transport of intense beams, H. Li et al., Nucl. Inst. Meth. Phys. Res. A 544, 367 (2005).

Velocity bunching of high-brightness electron beams, S. G. Anderson et al., Phys. Rev. ST Accel. Beams 8, 014401 (2005).

Sextupole correction of the longitudinal transport of relativistic beams in dispersionless translating sections, J. England et al., Phys. Rev. ST Accel. Beams 8, 012801 (2005).

Solutions of the matched KV envelope equations for a "smooth" asymmetric focusing channel, Martin Reiser et al., J. Appl. Phys. 96, 784 (2004).

Intense beam transport experiments in a multi-bend system at the University of Maryland Electron Ring, S. Bernal et al., Nucl. Inst. Meth. Phys. Res. A 519, 380 (2004).

Unified model of electron beam shot noise and coherent spontaneous emission in the helical wiggler free electron laser B. W. J. McNeil et al., Phys. Rev. ST Accel. Beams 6, 070701 (2003).

A NUMERICAL MODEL OF ELECTRON BEAM SHOT NOISE B. W. J. McNeil et al., Proceedings of the 2003 Particle Accelerator Conference (2003).

Femto-seconds kilo-ampere electron beam generation, X. J. Wang et al., Nucl. Instr. Meth. Phys. Res. A 507(1-2) 310 (2003).

Some basic features of the beam emittance, Klaus Floettmann, Phys. Rev. ST Accel. Beams 6, 034202 (2003).

Electromagnetic Weibel instability in intense charged particle beams with large energy anisotropy, E. A. Startsev, et al., Physics of Plasmas 10(12), 4829 (2003).

Strong pulsed magnetic quadrupole lens, Chichkine, V. et al., IEEE Transactions on Applied Superconductivity , 12(1), 699 (2002).

Simple method for particle tracking with coherent synchrotron radiation, M. Borland, Phys. Rev. ST Accel. Beams 4, 070701 (2001).

Mechanisms and control of beam halo formation in intense microwave sources and accelerators, C. Chen et al., Phys. Plasmas 7, 2203 (2000).

Production of halo particles by excitation of collective modes in high-intensity charged particle beams, S. Strasburg, et al., Phys. Rev. E 61, 5753 (2000).

Measurement of Small Electron Beam Spots, P. Tenenbaum, SLAC-PUB-8057 (1999).

MEASUREMENT OF SMALL ELECTRON-BEAM SPOTS, P. Tenenbaum, Annual Review of Nuclear and Particle Science Vol. 49: 125 (1999).

Reversible and irreversible emittance growth, P. G. OShea, Phys. Rev. E 57, 1081 (1998).

Electron beam instabilities as generation mechanism of electrostatic solitary waves in the magnetotail Y. Omura et al., JOURNAL OF GEOPHYSICAL RESEARCH, 101(A2), 2685 (1996).

Nonlinear dynamics of intense ion beam envelopes, Qian Qian, et al., Phys. Rev. E 53, 5349 (1996).

Emittance growth of bunched beams in bends, B.E. Carlsten et al., Phys. Rev. E 51, 1453 (1995).

Focusing of Submicron Beams for TeV-Scale e+e- Linear Colliders, V. Balakin et al., Phys. Rev. Lett. 74, 2479 (1995).

Transverse phase-space dynamics of mismatched charged-particle beams, C. L. Bohn, et al., Phys. Rev. Lett. 70, 932 (1993).

Wake-field characteristics of a high-intensity, multibunched beam, Y. Ogawa et al., Nucl. instrum. methods phys. res. A, 320(3), 405 (1992).

Emittance Growth in Mismatched Charged Particle Beams, M. Reiser, Proceedings 1991 Part. Accel. Conf., 2497 (pdf)

Equilibrium and stability properties of intense non-neutral electron flow, R. C. Davidson, et al., Rev. Mod. Phys. 63, 341 (1991).

Emittance Growth and Image Formation in a Nonuniform Space-Charge-Dominated Electron Beam, M. Reiser, et al., Phys. Rev. Lett. 61, 2933 (1988).

Volume reflection of high-energy charged particles in quasi-channeling states in bent crystals, A. M. Taratin et al., Physics Letters A, Volume 119, Issue 8, 12, 425 (1987).

High energy electron linacs; application to storage ring RF systems and linear colliders, Perry B. Wilson et al., AIP Conf. Proc. 87, 450 (1982).

Mutual Refraction of Electrons and Photons T. W. B. Kibble, Phys. Rev. 150, 1060 (1966).

Hydrodynamic Analysis of Noise in a Finite-Temperature Electron Beam H. C. Hsieh, J. Appl. Phys. 36, 2414 (1965).

Transverse Electron Beam Noise Described by Filamentary Beam Parameters K. Blotekjaer, J. Appl. Phys. 33, 2409 (1962).

Particle Beam Diagnostics

Noninvasive Micrometer-Scale Particle-Beam Size Measurement Using Optical Diffraction Radiation in the Ultraviolet Wavelength Range, M. Bergamaschi et al., Phys. Rev. Applied 13, 014041 (2020).

Noninvasive bunch length measurements exploiting Cherenkov diffraction radiation, A. Curcio et al., Phys. Rev. Accel. Beams 23, 022802 (2020).

Single-shot reconstruction of core 4D phase space of high-brightness electron beams using metal grids, D. Marx, at al., Phys. Rev. Accel. Beams 21, 102802 (2018).

Cherenkov light-based beam profiling for ultrarelativistic electron beams, E. Adli et al., Nucl. Instr. and Meth. in Phys. Res. A 783, 35 (2015).

First non-intercepting emittance measurement by means of optical diffraction radiation interference, A Cianchi et al., New J. Phys. 16 113029 (2014).

Design and application of multimegawatt X-band deflectors for femtosecond electron beam diagnostics, V. A. Dolgashev et al., Phys. Rev. ST Accel. Beams 17, 102801 (2014).

Note: Absolute calibration of two DRZ phosphor screens using ultrashort electron bunch, Y. C. Wu et al., Rev. Sci. Instrum. 83, 026101 (2012).

Absolute energy calibration for relativistic electron beams with pointing instability from a laser-plasma accelerator, H. J. Cha, Rev. Sci. Instrum. 83, 063301 (2012).

Transverse coherent transition radiation for diagnosis of modulated proton bunches A. Pukhov et al., Phys. Rev. ST Accel. Beams 15, 111301 (2012).

Synchrotron radiation based beam diagnostics at the Fermilab Tevatron R Thurman-Keup, et al., JINST 6 T09003 (2011).

Electron beam charge diagnostics for laser plasma accelerators, K. Nakamura, et al., Phys. Rev. ST Accel. Beams 14, 062801 (2011).

Absolute charge calibration of scintillating screens for relativistic electron detection, A. Buck et al., Rev. Sci. Instrum. 81, 033301 (2010).

Multi-GeV electron spectrometer, R. Faccini et al., Nucl. Instr. Meth. Phys. Res. A 623, 704 (2010).

Development of a Multi-GeV spectrometer for laser–plasma experiment at FLAME P. Valente et al., Nucl. Instr. Meth. Phys. Res. A 653, 42 (2010).

TRANSVERSE ELECTRON BEAM SIZE EFFECT ON THE BUNCH PROFILE DETERMINATION WITH COHERENT RADIATION DIAGNOSTICS, O. Grimm et al., EPAC'08 Proceedings, 113 (2008).

Absolute calibration of imaging plate for GeV electrons, N. Nakanii et al., Rev. Sci. Instrum. 79, 066102 (2008).

Absolute calibration of an electron spectrometer using high energy electrons produced by the laser-plasma interaction, S. Masuda et al., Rev. Sci. Instrum. 79, 083301 (2008).

Broadband single-shot electron spectrometer for GeV-class laser-plasma-based accelerators, K. Nakamura et al., Rev. Sci. Instrum. 79, 053301 (2008).

Development and calibration of a Thomson parabola with microchannel plate for the detection of laser-accelerated MeV ions, K. Harres, et al., Rev. Sci. Instrum. 79, 093306 (2008).

A two-dimensional laser-wire scanner for electron accelerators, A. Bosco et al., Nuclear Instruments and Methods in Physics Research Section A 592,3, 162 (2008).

Wake of a beam passing through a diffraction radiation target, Dao Xiang et al., Phys. Rev. ST Accel. Beams 11, 024001 (2008).

An analytic formalism for the emission of coherent transition radiation from an oblique finite thin metallic target screen, D. Sütterlin et al., Nucl. Instr. Meth Phys. Res. B 264(2), 361 (2007).

Cherenkov radiation of a fast electron in ultrashort intense laser plasmas, Qiang-Lin Hu et al., Phys. Plasmas 14, 123101 (2007).

Near-field imaging of optical diffraction radiation generated by a 7-GeV electron beam, A. Lumpkin et al., Phys. Rev. ST Accel. Beams 10, 022802 (2007).

Simplified self-consistent model for emittance growth in charged beams with mismatched envelopes, R.P. Nunes et al., Phys. Plasmas 14, 023104 (2007).

An experimentally robust technique for halo measurement using the IPM at the Fermilab Booster, J. Amundson, et al., Nucl. Instr. and Meth. Phys. Res. A 570(1), 1 (2007).

Theoretical considerations on imaging of micron size electron beam with optical transition radiation, Dao Xiang, et al., Nucl. Instr. Meth. Phys. Res. A, 570(3) 357 (2007).

Spatial coherence in the transition radiation spectrum G. L. Orlandi, Optics Communications 267(2), 322 (2006).

Principles of longitudinal beam diagnostics with coherent radiation O. Grimm et al., TESLA FEL 2006-03 (2006).

RF deflector design and measurements for the longitudinal and transverse phase space characterization at SPARC D. Alesini et al., Nucl. Instr. and Meth. in Phys. Res. A: 568, 488 (2006).

Longitudinal electron bunch profile diagnostics at 45 MeV using coherent Smith-Purcell radiation G. Doucas et al., Phys. Rev. ST Accel. Beams 9, 092801 (2006).

Electron beam characterizations with optical diffraction radiation from circular aperture and rectangular slit, R Schmidt, et al., Nucl. Instr. Meth. Phys. Res. B 254(1) (2006).

Experimental characterization of the transverse phase space of a 60-MeV electron beam through a compressor chicane, F. Zhou, et al., Phys. Rev. ST Accel. Beams 9, 114201 (2006).

Radiative damping and electron beam dynamics in plasma-based accelerators, P. Michel, et al., Phys. Rev. E 74, 026501 (2006).

Longitudinal electron bunch diagnostics using coherent transition radiation, D. Mihalcea, et al., Phys. Rev. ST Accel. Beams 9, 082801 (2006).

An Exact Magnetic-Moment Invariant of Charged-Particle Gyromotion, Hong Qin, et al., Phys. Rev. Lett. 96, 085003 (2006).

Properties of diffraction radiation in practical conditions: Finite size target effect, surface roughness and pre-wave zone, Dao Xiang et al., Nucl. Instr. and Meth. Phys. Res. B 248, 163 (2006).

Far-Infrared Transition and Diffraction Radiation, S. Casalbuoni, TESLA Report 2005-15 (2005).

Coherent radiation recoil effect for the optical diffraction radiation beam size monitor at SLAC FFTB, A. Potylitsyn et al., Nucl. Instr. and Meth. Phys. Res. B 227, 170 (2005).

Evaluation of transition radiation with wake field theory, Dao Xiang et al., Nucl. Instr. and Meth. Phys. Res. A 553, 381 (2005).

Levy-Student distributions for halos in accelerator beams, N. Cufaro Petroni et al., Phys. Rev. E 72, 066502 (2005).

Optical transition radiation imaging of intense proton beams at FNAL V.E. Scarpine et al., IEEE Transactions on Nuclear Science 51, 1529, (2004).

Electro-Optic Technique with Improved Time Resolution for Real-Time, Nondestructive, Single-Shot Measurements of Femtosecond Electron Bunch Profiles, G. Berden, Phys. Rev. Lett. 93, 114802 (2004).

Fluctuations Do Matter: Large Noise-Enhanced Halos in Charged-Particle Beams C.L. Bohn et al., Phys. Rev. Lett. 91, 264801 (2003).

Coherence effects in the transition radiation spectrum and practical consequences G. L. Orlandi, Optics Communications 211(1-6), 109 (2002).

Optical transition radiation proton beam profile monitor J. Bosser et al., Nucl. Instr. and Meth. in Phys. Res. A: 238(1) 45 (2002).

Single-Shot Electron-Beam Bunch Length Measurements, I. Wilke, Phys. Rev. Lett. 88, 124801 (2002).

Longitudinal space charge effect in slowly converging or diverging relativistic beams, Karl L. F. Bane, Phys. Rev. ST Accel. Beams 5, 104401 (2002).

Beam-Halo Measurements in High-Current Proton Beams, C. K. Allen, et al., Phys. Rev. Lett. 89, 214802 (2002).

Simple method for particle tracking with coherent synchrotron radiation M. Borland, Phys. Rev. ST Accel. Beams 4, 070701 (2001).

COHERENT SYNCHROTRON RADIATION MEASUREMENTS IN THE CLIC TEST FACILITY (CTF II), H.H. Braun et al., Proceedings of the XX International Linac Conference, 726 (2000).

Measurement of spatio-temporal terahertz field distribution by using chirped pulse technology, Zhiping Jiang et al., IEEE Journal of Quantum Electronics, 36(10), 1214 (2000).

Subpicosecond Electro-optic Measurement of Relativistic Electron Pulses, X. Yan, Phys. Rev. Lett. 85, 3404 (2000).

Measurement of Electron-Beam Bunch Length and Emittance Using Shot-Noise-Driven Fluctuations in Incoherent Radiation, P. Catravas, et al., Phys. Rev. Lett. 82, 5261 - 5264 (1999).

Measurement of femtosecond electron bunches using a rf zero-phasing method, D. X. Wang, et al., Phys. Rev. E 57, 2283 (1998).

Particle-core model for transverse dynamics of beam halo, T. P. Wangler, et al., Phys. Rev. ST Accel. Beams 1, 084201 (1998).

Halo formation in three-dimensional bunches, R. L. Gluckstern, et al., Phys. Rev. E 58, 4977 (1998).

rms Envelope Equations in the Presence of Space Charge and Dispersion, M. Venturini, et al., Phys. Rev. Lett. 81, 96 (1998).

A New Non Intercepting Beam Size Diagnostics Using Diffraction Radiation from a Slit, M. Castellano, LNF-96/042, IAEA Collection (1996)

Direct Measurement of Diffusion Rates in High Energy Synchrotrons Using Longitudinal Beam Echoes, L. K. Spentzouris et al., Phys. Rev. Lett. 76, 620 (1996).

Coherent transition radiation diagnosis of electron beam microbunching, J. Rosenzweig et al., Nucl. Instr. Meth. Phys. Res. A 365(1), 255 (1995).

Phase problem associated with the determination of the longitudinal shape of a charged particle bunch from its coherent far-ir spectrum, R. Lai, et al., Phys. Rev. E 52, 4576 (1995).

Halo formation induced by density nonuniformities in intense ion beams, Qian Qian, et al., Phys. Rev. E 51, R5216 (1995).

Coherent transition radiation in the far-infrared region, Y. Shibata et al., Phys. Rev. E 49, 785 (1994).

Diagnostics of an electron beam of a linear accelerator using coherent transition radiation, Y. Shibata et al., Phys. Rev. E 50, 1479 (1994).

Nonlinear properties of the Kapchinskij-Vladimirskij equilibrium and envelope equation for an intense charged-particle beam in a periodic focusing field, Chiping Chen, et al., Phys. Rev. E 49, 5679 (1994).

Nonlinear resonances and chaotic behavior in a periodically focused intense charged-particle beam, Chiping Chen, et al., Phys. Rev. Lett. 72, 2195 (1994).

Analytic Model for Halo Formation in High Current Ion Linacs, Robert L. Gluckstern , Phys. Rev. Lett. 73, 1247 (1994).

Observation of coherent transition radiation at millimeter and submillimeter wavelengths, Y. Shibata, et al., Phys. Rev. A 45, R8340 - R8343 (1992).

A beam size monitor for the Final Focus Test Beam, J. Buon et al., Nucl. Instr. and Meth. in Phys. Res. A306(1–2), 93 (1991).

Multiparticle coherence calculations for synchrotron-radiation emission, Carol J. Hirschmugl et al., Phys. Rev. A 44, 1316 (1991).

Observation of coherent transition radiation, U. Happek et al., Phys. Rev. Lett. 67, 2962 (1991).

Longitudinal emittance: An introduction to the concept and survey of measurement techniques including design of a wall current monitor R. Webber, AIP Conf. Proc. 212, pp. 85 (1990).

Transverse emittance: Its definition, applications, and measurement O. Sander, AIP Conf. Proc. 212, pp. 127 (1990).

Observation of coherent synchrotron radiation, T. Nakazato et al., Phys. Rev. Lett. 63, 1245 - 1248 (1989).

Angular radiation pattern of Smith-Purcell radiation A. Gover et al., JOSA B, Vol. 1, Issue 5, 723 (1984).

Performance of a 4 GeV/c magnetic spectrograph taking advantage of the third integral resonant extraction properties to operate in the energy loss mode, E. Grorud et al., Nuclear Instruments and Methods in Physics Research 188(3), 549 (1981).

Smith-Purcell radiation from a point charge moving parallel to a reflection grating P. M. van den Berg, JOSA, Vol. 63, Issue 12, 1588 (1973).

Transition Radiation and Optical Bremsstrahlung from Electron-Bombarded Thin Gold Foils, E. T. Arakawa et al., Phys. Rev. 131, 719 (1963).

Optical Emission from Irradiated Foils. I , R. H. Ritchie et al., Phys. Rev. 126, 1935 (1962).

Optical Emission from Irradiated Foils. II, A. L. Frank et al., Phys. Rev. 126, 1947 (1962).

BroadRange Magnetic Spectrograph, C. P. Browne et al., Review of Scientific Instruments 27, 899 (1956).

Suppression of Coherent Radiation by Electrons in a Synchrotron, John S. Nodvick et al., Phys. Rev. 96, 180 (1954).

Visible Light from Localized Surface Charges Moving across a Grating (Smith-Purcell Radiation) S. J. Smith and E. M. Purcell, Phys. Rev. 92, 1069 (1953).

Electron Cloud (ecloud)

Electron cloud observations and cures in the Relativistic Heavy Ion Collider, W. Fischer et al., Phys. Rev. ST Accel. Beams 11, 041002 (2008).

Electron cloud effects on beam evolution in a circular accelerator, G. Rumolo et al., Phys. Rev. ST Accel. Beams 6, 081002 (2003).

Bunch-by-bunch measurements of the betatron tune and the synchronous phase and their applications to beam dynamics at KEKB, T. Ieiri et al., Phys. Rev. ST Accel. Beams 5, 094402 (2002).

Simulation of Single Bunch Instabilities Driven by Electron Cloud in the SPS, G. Rumolo et al., Proceedings of the 2001 Particle Accelerator Conference, 1886 (2001).

Head-Tail Instability Caused by Electron Clouds in Positron Storage Rings, K. Ohmi et al., Phys. Rev. Lett. 85, 3821 (2000).

Numerical study for the two-beam instability due to ions in electron-storage rings, K. Ohmi et al., Phys. Rev. E 55, 7550 (1997).

Simulations

On the elimination of numerical Cerenkov radiation in PIC simulations, A. D. Greenwood et al., Journal of Computational Physics, 201(2), 665 (2004).

On the elimination of numerical Cerenkov radiation in PIC simulations, A. D. Greenwood et al., Journal of Computational Physics, 201(2), 665 (2004).

GEANT 4—a simulation toolkit, S. Agostinelli et al., Nucl. Instr. Meth. in Phys. Res. A 506(3), 250 (2003).

User-configurable MAGIC for electromagnetic PIC calculations, B. Goplen et al., Computer Physics Communications 87(1-2), 54 (1995).

Numerical Heating in Hybrid Plasma Simulations, P. W. Rambo, Journal of Computational Physics, 133(1), 173 (1997).

Numerical Cherenkov instabilities in electromagnetic particle codes, B b Godfrey, Journal of Computational Physics, 15(4), 504 (1974).

Measurements of collision and heating times in a two-dimensional thermal computer plasma, R. W. Hockney, Journal of Computational Physics, 8(1), 19 (1971).

Numerical solution of inital boundary value problems involving maxwell's equations in isotropic media, Kane Yee, IEEE Trans. on Ant. and propag. 14(3), 302 (1966).

Optical Diagnostics

Temporal Evolution of the Light Emitted by a Thin, Laser-ionized Plasma Source, V. Lee et al., arXiv:2309.10723 [physics.plasm-ph] (2023)

Collective radiation effects in rubidium vapor beyond the yoked superradiance, S. Pulkin et al., J. Phys. B: At. Mol. Opt. Phys. 53 175003 (2020).

Application of Thomson scattering to helicon plasma sources, R. Agnello et al., Journal of Plasma Physics, 86(3), 905860306 (2020).

Frequency shifts due to Stark effects on a rubidium two-photon transition, K. W. Martin et al., Phys. Rev. A 100, 023417 (2019).

Absolute strong-field ionization probabilities of ultracold rubidium atoms, P. Wessels et al., Communications Physics volume 1, Article number: 32 (2018).

In situ characterization of ultraintense laser pulses, C. N. Harvey, Phys. Rev. Accel. Beams 21, 114001 (2018).

Tunable High-Resolution Macroscopic Self-Engineered Geometric Phase Optical Elements, E. Brasselet, Phys. Rev. Lett. 121, 033901 (2018).

Electron Ghost Imaging, S. Li, et al., Phys. Rev. Lett. 121, 114801 (2018).

Frequency stabilization of a diode laser on the 5P to 5D transition of the Rb atom, A. Yu. Kalatskiy et al., Laser Phys. 27 055703 (2017)

Simulation of density measurements in plasma wakefields using photon acceleration, M. Kasim et al., Phys. Rev. ST Accel. Beams 18, 032801 (2015).

Light emission from particle beam induced plasma: An overview, Andreas Ulrich, Laser and Particle Beams , Volume 30 , Issue 2 , 199 (2012).

Measurement of the temporal evolution of electron density in a nanosecond pulsed argon microplasma: using both Stark broadening and an OES line-ratio method, Xi-Ming Zhu et al., J. Phys. D: Appl. Phys. 45 295201 (2012).

Absolute absorption on the rubidium D1 line including resonant dipole–dipole interactions, L. Weller, et al., J. Phys. B: At. Mol. Opt. Phys. 44, 195006 (2011).

Conversion efficiency calculations for soft x-rays emitted from tin plasma for lithography applications, P. Demir et al., Springer Proceedings in Physics (2009).

Adaptive subwavelength control of nano-optical fields, M. Aeschlimann et al., Nature 446, 301 (2007).

Benchmarking of Electro-Optic Monitors for Femtosecond Electron Bunches, G. Berden et al., Phys. Rev. Lett. 99, 164801 (2007).

Experimentally simple, extremely broadband transient-grating frequency-resolved-opticalgating arrangement, Dongjoo Lee, et al., Optics Express, 15(2), 760 (2007).

Stark broadening of high principal quantum number hydrogen Balmer lines in low-density laboratory plasmas, E. Stambulchik, et al., Phys. Rev. E 75, 016401 (2007).

All-Optical Delay of Images using Slow Light, Ryan M. Camacho, et al., Phys. Rev. Lett. 98, 043902 (2007).

Atomic data for x-ray astrophysics, T. R. Kallman, et al., Rev. Mod. Phys. 79, 79 (2007).

Snapshots of laser wakefields, N. H. Matlis, et al., Nature Physics 2, 749 (2006).

Properties of diffraction radiation in practical conditions: Finite size target effect, surface roughness and pre-wave zone, Dao Xiang et al., Nucl. Instr. and Meth. Phys. Res. B 248, 163 (2006).

Plasma diagnostics by laser spectroscopic electric field measurement U. Czarnetzki et al., Pure Appl. Chem., Vol. 77, No. 2, 345 (2005).

Direct measurement of electron density in microdischarge at atmospheric pressure by Stark broadening Dong, Lifang et al., Appl. Phys. Lett. 86, 161501 (2005).

Coherent radiation recoil effect for the optical diffraction radiation beam size monitor at SLAC FFTB, A. Potylitsyn et al., Nucl. Instr. and Meth. Phys. Res. B 227, 170 (2005).

Evaluation of transition radiation with wake field theory, Dao Xiang et al., Nuclear Instruments and Methods in Physics Research A 553, 381 (2005).

Sharper Focus for a Radially Polarized Light Beam R. Dorn et al., Phys. Rev. Lett. 91, 233901 (2003).

Relativistic effects on intense laser beam propagation in plasma channels, B. Hafizi et al., Phys. Plasmas 10, 1483 (2003).

Spectrally Filtered Raman/Thomson Scattering Using a Rubidium Vapor Filter W. Lee, AIAA Journal, 40(12), 2504 (2002).

Stark Broadening of the Hydrogen Balmer-α Line in Low and High Density Plasmas, H.R. Griem, Contributions to Plasma Physics, 40(1-2), 46 (2000).

Review of the advanced generalized theory for Stark broadening of hydrogen lines in plasmas with tables, J. E. Touma et al., Journal of Quantitative Spectroscopy and Radiative Transfer, 65, 543 (2000).

Photon acceleration versus frequency-domain interferometry for laser wakefield diagnostics, J. M. Dias et al., Phys. Rev. ST Accel. Beams 1, 031301 (1998).

Stark effect investigations of resonance lines of neutral potassium, rubidium, europium and gallium, C. Krenn et al., Zeitschrift für Physik D Atoms, Molecules and Clusters 41, 229 (1997).

Electron number density and temperature measurement in a laser-induced hydrogen plasma, C. Parigger et al., Journal of Quantitative Spectroscopy and Radiative Transfer, 53(3), 249 (1995).

Shift and width of the Hα line of hydrogen in dense plasmas, St. Boddeker, et al., Phys. Rev. E 47, 2785 (1993).

Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines, J. Ashkenazy, Phys. Rev. A 43, 5568 (1991).

Modulation transfer and optical Stark effect in a rubidium atomic clock pumped by a semiconductor laser, M. Hashimoto et al., Journal of the Optical Society of America B Vol. 6(10), 1777 (1989).

Application of holographic interferometry for plasma diagnostics, A N Zaidel, Sov. Phys. Usp. 29 447 (1986).

Investigation of the Stark broadening of Balmer beta V Helbig et al., J. Phys. B: At. Mol. Phys. 14 3573 (1981).

Doppler-free multiphotonic spectroscopy, G Grynberg et al., Rep. Prog. Phys. 40 791 (1977).

Variations in Balmer-line Stark profiles with atom-ion reduced mass, W. L. Wiese et al., Phys. Rev. A 11, 1854 (1975).

Hydrogen Stark-Broadening Tables, H.R. Griem, Astrophysical Journal Supplement, vol. 25, 37 (1973).

Detailed Study of the Stark Broadening of Balmer Lines in a High-Density Plasma, W. L. Wiese et al., Phys. Rev. A 6, 1132 (1972).

Interferometric Gas Diagnostics by the Hook Method M.C.E. Huber, Dosanjh D.S. (eds) Modern Optical Methods in Gas Dynamic Research. Springer, Boston, MA (1971).

Polarised interferometric spectrometry for the millimetre and submillimetre spectrum, D.H. Martin and E. Puplett, Infrared Physics, Volume 10, Issue 2, 105, 1970.

Optical Constants of Rubidium and Cesium from 0.5 to 4.0 eV N. V. Smith, Phys. Rev. B 2, 2840–2848 (1970).

Measurements of Stark Broadening of Some Singly Ionized Argon Lines N. W. Jalufka et al., Phys. Rev. Lett. 16, 1073 (1966).

Stark Broadening of Isolated Spectral Lines from Heavy Elements in a Plasma Hans R. Griem, Phys. Rev. 128, 515 (1962).

Stark Broadening of Neutral Helium Lines in a Plasma, H.R. Griem et al., Phys. Rev. 125, 177 (1962).

Light as a Plasma Probe M. Baranger et al., Phys. Rev. 123, 25 (1961).

Stark Broadening of Hydrogen Lines in a Plasma, Hans R. Griem et al., Phys. Rev. 116, 4 (1959).

Astrophysics

Particle acceleration around SNR shocks, G. Morlino et al., Nucl. Instr. Meth. Phys. Res. A 720, 70 (2013).

The microphysics and macrophysics of cosmic rays Ellen G. Zweibel, Phys. Plasmas 20, 055501 (2013).

Weibel-Instability-Mediated Collisionless Shocks in the Laboratory with Ultraintense Lasers F. Fiuza et al., Phys. Rev. Lett. 108, 235004 (2012).

Limits on Neutrino Emission from Gamma-Ray Bursts with the 40 String IceCube Detector, R. Abbasi et al., Phys. Rev. Lett. 106, 141101 (2011).

The dark Universe, Matthias Bartelmann, Rev. Mod. Phys. 82, 331 (2010).

COSMOLOGICAL EFFECTS OF WEIBEL-TYPE INSTABILITIES M. Lazar et al., ApJ 693, 1133 (2009).

Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C, A. A. Abdo et al., ScienceExpress, p.1 Feb.19 (2009).

GRBs as cosmological probes-cosmic chemical evolution, S Savaglio, New J. Phys. 8 195 (2008).

Jitter radiation in gamma-ray bursts and their afterglows: emission and self-absorption, J.C. Workman et al., Monthly Notices of the Royal Astronomical Society: Letters Volume 386 Issue 1, Pages 199 (2008).

Are Gamma-Ray Burst Shocks Mediated by the Weibel Instability? Lyubarsky et al., ApJ 647, 1250 (2006).

Acceleration Mechanics in Relativistic Shocks by the Weibel Instability K.-I. Nishikawa et al., ApJ 642, 1267 (2006).

Gamma-ray bursts and collisionless shocks, E Waxman, Plasma Phys. Control. Fusion 48 B137 (2006).

A unified picture for gamma-ray burst prompt and X-ray afterglow emissions, P. Kumar et al., Monthly Notices of the Royal Astronomical Society, 367, 1, L52 - L56 (2006).

Inductive and Electrostatic Acceleration in Relativistic Jet-Plasma Interactions Johnny S. T. Ng and Robert J. Noble, Phys. Rev. Lett. 96, 115006 (2006).

Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data, J. A. Nousek, The Astrophysical Journal, 642:389 (2006);.

The generation of magnetic fields by the Weibel instability, Y. Fujita, Astronomische Nachrichten Volume 327 Issue 5-6, Pages 443 (2006);.

Supernovae and gamma-ray bursts: Relativistic plasma physics in the Einstein centennial, J. Craig Wheeler, Phys. Plasmas 13, 058101 (2006);.

Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena, D. D. Ryutov et al., AIP Conference Proceedings Volume 827, 341 (2006).

Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks, K.-I. Nishikawa et al., ApJ 622 927 (2004).

Gamma-Ray Bursts, Collisionless Shocks and Synthetic Spectra, C. Hededal, PhD thesis (2005).

A photometric redshift of z = 6.39 0.12 for GRB 050904 J. B. Haislip, et al., Nature 440, 181 (2005).

THE PHYSICS OF COLLISIONLESS SHOCKS: 4th Annual IGPP International Astrophysics Conference, G. Li, et al. Editors, AIP Conference Proceedings Volume 781 (2005).

Long-Time Evolution of Magnetic Fields in Relativistic Gamma-Ray Burst Shocks, Mikhail V. Medvedev, et al., The Astrophysical Journal Letters, 618:L75 (2005).

Non-Fermi Power-Law Acceleration in Astrophysical Plasma Shocks, C. B. Hededal et al., ApJ 617 L107-L110 (2004).

Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays, A. R. Bell, Monthly Notices of the Royal Astronomical Society, 353(2), 550 (2004).

The physics of gamma-ray bursts, Tsvi Piran, Rev. Mod. Phys. 76, 1143 (2004).

Weibel Instability Driven by Relativistic Pair Jets: Particle Acceleration, Magnetic Field Generation, and Emission, K.-I. Nishikawa, et al., Proceedings of the 22nd Texas Symposium on Relativistic Astrophysics at Stanford (2004).

Generation of magnetic fields in the early Universe, P. Shukla, Physics Letters A 310(2-3), 182 (2003).

Interpenetrating Plasma Shells: Near-Equipartition Magnetic Field Generation and Nonthermal Particle Acceleration, L. O. Silva, et al., The Astrophysical Journal Letters, 596:L121 (2003).

Particle Acceleration in Relativistic Jets Due to Weibel Instability, K.-I. Nishikawa, et al., The Astrophysical Journal, 595, 555 (2003).

New perspectives in physics and astrophysics from the theoretical understanding of Gamma-Ray Bursts, Remo Ruffini, et al., AIP Conf. Proc. Volume 668, 16 (2003).

On the spectrum of ultrahigh energy cosmic rays and the γ-ray burst origin hypothesis, S. T. Scully, Astroparticle Physics 16(3), 271 (2002).

On the role of the purely transverse Weibel instability in fast ignitor scenarios, L. Silva, Phys. Plasmas 9, 2458 (2002).

THEORIES OF GAMMA-RAY BURSTS, P. Mesziros, Annual Review of Astronomy and Astrophysics Vol. 40: 137 (2002).

Gamma-Ray Bursts: Accumulating Afterglow Implications, Progenitor Clues, and Prospects, P. Mesziros, Science Vol. 291. no. 5501, pp. 79 (2002).

Cosmic ray acceleration to very high energy through the non-linear amplification by cosmic rays of the seed magnetic field A. R. Bell et al., Monthly Notices of the Royal Astronomical Society, 321(3), 433 (2001).

New connection between central engine weak physics and the dynamics of gamma-ray burst fireballs J. Pruet, et al., Phys. Rev. D 64, 063002 (2001).

Treatment planning for heavy-ion radiotherapy: physical beam model and dose optimization, M. V. Medvedev, The Astrophysical Journal, 540,704 (2000).

Gamma-ray bursts and the fireball model Tsvi Piran, Physics Reports, Volume 314, Issue 6, June 1999, Pages 575-667.

Physical Parameters of GRB 970508 and GRB 971214 from Their Afterglow Synchrotron Emission R. A. M. J. Wijers et al., The Astrophysical Journal, 523:177 (1999).

Generation of Magnetic Fields in the Relativistic Shock of Gamma-Ray Burst Sources M. V. Medvedev et al., The Astrophysical Journal, 526:697 (1999).

Generation of a Small-Scale Quasi-Static Magnetic Field and Fast Particles during the Collision of Electron-Positron Plasma Clouds, Y. Kazimura et al., ApJ 498 L183-L186 (1998).

Gamma-Ray Bursts G. J. Fishman et al., Annual Review of Astronomy and Astrophysics Vol. 33: 415 (1995).

Identification of two classes of gamma-ray bursts, C. Kouveliotou, et al., The Astrophysical Journal, volume 413, part 2, page L101 (1993).

The plasma physics of shock acceleration, Frank C. Jones, et al., SPACE SCIENCE REVIEWS 58(1), 259 (1991).

Electron-positron pair creation in relativistic shocks: Pair plasma in thermodynamic equilibrium, Naoki Iwamoto, Phys. Rev. A 39, 4076 (1989).

A qualitative study of cosmic fireballs and gamma-ray bursts, G. Cavallo, et al., Royal Astronomical Society, Monthly Notices, 183, 359 (1978).

Observations of Gamma-Ray Bursts of Cosmic Origin, (first observation of GRNB) W. Klebesadel, et al., Astrophysical Journal, vol. 182, p.L85 (1973).

A RELATION BETWEEN DISTANCE AND RADIAL VELOCITY AMONG EXTRA-GALACTIC NEBULAE, Edwin Hubble, PNAS 1929 15:168-173 (1929).

General Physics

Measuring the Single-Photon Temporal-Spectral Wave Function, A. O. C. Davis, et al., Phys. Rev. Lett. 121, 083602 (2018).

Editorial, Special Issue: Particle Physics after the Higgs H. Abramowicz et al., Annalen der Physik, 528(1-2), 16 (2016).

Coherent excitation of two-state system by a Lorentzian field, G. S. Vasilev et al., arXiv:1402.5119 (2014).

Dynamic Control of the Polarization of Intense Laser Beams via Optical Wave Mixing in Plasmas, P. Michel et al., Phys. Rev. Lett. 113, 205001 (2014).

Cherenkov Radiation from Short Relativistic Bunches: General Approach, S. S. Baturin et al., Phys. Rev. Lett. 113, 214801 (2014).

Quantum Radiation Reaction in Laser–Electron-Beam Collisions, T. G. Blackburn et al., Phys. Rev. Lett. 112, 015001 (2014).

Squeezed light from a silicon micromechanical resonator A.H. Safavi-Naeini et al., Nature 500, 185 (2013).

Nonparaxial Mathieu and Weber Accelerating Beams, P. Zhang et al., Phys. Rev. Lett. 109, 193901 (2012).

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC G. Aad et al., Physics Letters B 716, 1(17), 1 (2012).

News and Views, Particle physics: Sterile neutrinos W.C. Louis, Nature 478 (2011).

Improved measurement of the shape of the electron J. J. Hudson et al., Nature 473, 493 (2011)

Introduction to quantum noise, measurement, and amplification, A. A. Clerk et al., Rev. Mod. Phys. 82, 1155 (2010).

Transforming Light, V. M. Shalaev, Science 322(5900), 384 (2008).

The Cosmic Microwave Background for Pedestrians: A Review for Particle and Nuclear Physicists, Dorothea Samtleben at al., Annual Review of Nuclear and Particle Science Vol. 57: 245 (2007).

What Do Electromagnetic Plasmas Tell Us about the Quark-Gluon Plasma?, Stanislaw Mrowczynski and Markus H. Thoma, Annual Review of Nuclear and Particle Science Vol. 57: 61 (2007).

Delayed neutron yields and spectra from photofission of actinides: data and calculations with Bremsstrahlung photons below 20 MeV, D. Dori, et al., International Conference on Nuclear Data for Science and Technology 2007 (2007).

Laboratory soft x-ray emission due to the Hawking-Unruh effect?, G. Brodin, et al., arXiv:0712.2985 (2007).

Subnanometer-Scale Measurements of the Interaction of Ultrafast Soft X-Ray Free-Electron-Laser Pulses with Matter, S. P. Hau-Riege et al., Phys. Rev. Lett. 98, 145502 (2007).

Imaging Atomic Structure and Dynamics with Ultrafast X-ray Scattering, K. J. Gaffney et al., Science Vol. 316. no. 5830, 1444 (2007).

Capillary Origami: Spontaneous Wrapping of a Droplet with an Elastic Sheet, Charlotte Py et al., Phys. Rev. Lett. 98, 156103 (2007).

Liquid Transport due to Light Scattering, R. D. Schroll, et al., Phys. Rev. Lett. 98, 133601 (2007).

Photonic analog-to-digital converters, J.-Y. Chesnel, et al., Optics Express, 15(5), 1955 (2007).

Young-Type Experiment Using a Single-Electron Source and an Independent Atomic-Size Two-Center Interferometer, J.-Y. Chesnel, et al., Phys. Rev. Lett. 98, 100403 (2007).

Is Violation of Newton's Second Law Possible?, A. Yu. Ignatiev, Phys. Rev. Lett. 98, 101101 (2007).

Effects of the littlest Higgs model with T-parity on Higgs boson production at high-energy e+e- colliders, Chong-Xing Yue et al. EPL 77 51003 (2007).

Electromagnetic momentum and radiation pressure derived from the Fresnel relations, Michael E. Crenshaw, Optics Express, 15(2), 714 (2007).



Photofission tomography of nuclear waste packages, Mehdi Gma, Nuclear Instruments and Methods in Physics Research Section A, 562(2) (2006).

Observation of 238U photofission products, Wehe, D.K., IEEE Transactions on Nuclear Science, 53(3), 1430 (2006).

Electron-positron pair production by photons: A historical overview, J.H. Hubbell, Radiation Physics and Chemistry Volume 75, Issue 6, Pages 614 (2006).

Ultrafast time-resolved electron diffraction with megavolt electron beams, J. B. Hastings et al., Appl. Phys. Lett. 89, 184109 (2006).

Resurrection of Schrodinger's cat, Jae-Seung Lee, et al., New J. Phys. 8 144 (2006).

Liquidity and the multiscaling properties of the volume traded on the stock market, Z. Eisler, EPL 77 28001 (2007).

Optomechanical Entanglement between a Movable Mirror and a Cavity Field, D. Vitali, et al., Phys. Rev. Lett. 98, 030405 (2007).

Tests of the Gravitational Inverse-Square Law below the Dark-Energy Length Scale, D. J. Kapner, et al., Phys. Rev. Lett. 98, 021101 (2007).

Photofission for the detection of actinides, H. Safa, et al., Journal of Radioanalytical and Nuclear Chemistry, 271(1), 241 (2007).

The unstable glasma, Paul Romatschke et al., Phys. Rev. D 74, 045011 (2006).

Ultrafast time-resolved electron diffraction with megavolt electron beams, J. B. Hastings et al., Appl. Phys. Lett. 89, 184109 (2006).

X-Ray Absorption Spectra of Water from First Principles Calculations, D. Prendergast, et al., Phys. Rev. Lett. 96, 215502 (2006).

Mechanics of Climbing and Attachment in Twining Plants, A. Goriely, et al., Phys. Rev. Lett. 97, 184302 (2006).

Optics in the relativistic regime, G. Mourou, et al., Rev. Mod. Phys. 78, 309 (2006).

Quantum teleportation between light and matter, J. F. Sherson, et al., Nature 443, 557 (5 October 2006).

Displacement Current and the Generation of Parallel Electric Fields, Yan Song, et al., Phys. Rev. Lett. 96, 145002 (2006).

Nuclear Reactions Induced by a Pyroelectric Accelerator, Jeffrey Geuther, et al., Phys. Rev. Lett. 96, 054803 (2006).

Fireball Ejection from a Molten Hot Spot to Air by Localized Microwaves, Vladimir Dikhtyar, et al., Phys. Rev. Lett. 96, 045002 (2006).

Beam shaping profiles and propagation (Proceedings Paper) D. L. Shealy et al., Proceedings Vol. 5876 Laser Beam Shaping VI, 58760D (2005).

The spin structure of the proton, Steven D. Bass, Rev. Mod. Phys. 77, 1257 (2005).

Atomic-Scale Visualization of Inertial Dynamics, A. M. Lindenberg, Science 308. no. 5720, 392 (2005).

Clocking Femtosecond X Rays, A. L. Cavalieri, Phys. Rev. Lett. 94, 114801 (2005).

Probing the antiworld, M. Charlton, PhysicsWeb (IOP), October 2005.

Antimatter performs optical gymnastics, J. Eades, PhysicsWeb (IOP), March 2005.

Solutions of relativistic Newton’s equations for nonconstant fields, R. E. Wooten , et al., American Journal of Physics 72, 998 (2004).

Spintronics: Fundamentals and applications, Igor Žutić et al., Rev. Mod. Phys. 76, 323 (2004).

The ultimate speed of magnetic switching in granular recording media, I. Tudosa et al., Nature 428, 831-833 (22 April 2004).

Production and detection of cold antihydrogen atoms, M. Amoretti, et al., Nucl. Instr. Meth. Phys. Res. A, 518(1), 244 (2004).

Collective instabilities and beam-plasma interactions in intense heavy ion beams, R. C. Davidson, et al., Phys. Rev. ST Accel. Beams 7, 114801 (2004).

Phyllotactic Patterns on Plants, P. D. Shipman, et al., Phys. Rev. Lett. 92, 168102 (2004). Link to Phyllotaxis site.

Magnetic-field-limited currents J.R. Davies, Phys. Rev. E 68, 037501 (2003).

Classical damped quartic anharmonic oscillator: a simple analytical approach, Swapan Mandal, International Journal of Non-Linear Mechanics 38(7), 1095 (2003).

Nine formulations of quantum mechanics, Daniel F. Styer et al., American Journal of Physics, 70, Issue 3, pp. 288 (2002).

From Lorenz to Coulomb and other explicit gauge transformations, J. D. Jackson, American Journal of Physics, 70(9), 917 (2002).

Black hole production at the CERN LHC: String balls and black holes from pp and lead-lead collisions, A. Chamblin et al., Phys. Rev. D 66, 091901 (2002).

The High-Energy Physics Advisory Panel long range plan for U.S. high-energy physics in the 21st century, Bagger, J. & Barish, B., http:00doe-hep.hep.net 0 lrp_panel 0 hepap_lrp.pdf (2002).

Production and detection of cold antihydrogen atoms, M. Amoretti, et al., Nature 419, 456 (2002).

Pair and γ-photon production from a thin foil confined by two laser pulses, B. Shen et al., Phys. Rev. E 65, 016405 (2001).

Propagation of flat-topped multi-Gaussian laser beams A. A. Tovar et al., JOSA A, Vol. 18, Issue 8, pp. 1897 (2001).

Historical roots of gauge invariance, J. D. Jackson et al., Rev. Mod. Phys. 73, 663 (2001).

Attosecond metrology, M. Hentschel, Nature 414, 509 (2001).

Synthesis of Photonic Crystals for Optical Wavelengths from Semiconductor Quantum Dots, Y. A. Vlasov, et al., Advanced Materials 11(2), 165 (1999).

The Gaussian wave solution of Maxwell's equations and the validity of scalar wave approximation, P. Varga et al., Optics Communications 152(1–3), 108 (1998).

Oscillations of solar and atmospheric neutrinos, Riccardo Barbieri et al., Journal of High Energy Physics JHEP12 (1998).

ACCELERATOR-DRIVEN SYSTEMS FOR NUCLEAR WASTE TRANSMUTATION, Charles D. Bowman, Annual Review of Nuclear and Particle Science Vol. 48: 505 (1998).

Lyapunov Exponents without Rescaling and Reorthogonalization, Govindan Rangarajan, et al., Phys. Rev. Lett. 80, 3747 (1998).

Scaling and formulary of cross-sections for ion-atom impact ionization, I D Kaganovich, New J. Phys. 8 278 (1997).

A PRACTICAL FIT FORMULA FOR IONIZATION RATE COEFFICIENTS OF ATOMS AND IONS BY ELECTRON IMPACT:Z= 1-28, G. S. VORONOV, Atomic Data and Nuclear Data Tables 65(1), 1 (1997).

Solitons in optical communications Hermann A. Haus et al./i>, Rev. Mod. Phys. 68, 423–444 (1996).

The eighteen arbitrary parameters of the standard model in your everyday life Robert N. Cahn, Rev. Mod. Phys. 68, 951–959 (1996).

`Short' pulse MPI of xenon: the 2P1/2 ionization channel, H Rottke, et al., J. Phys. B: At. Mol. Opt. Phys. 29 1479, (1996).

Pattern formation outside of equilibrium, M. C. Cross, et al., Rev. Mod. Phys. 65, 851 (1993).

Laser-induced population transfer in multistate systems: A comparative study, B. W. Shore et al., Phys. Rev. A 45, 5297 (1992).

Tunneling ionization of atoms and atomic ions in an intense laser field with a nonhomogeneous space–time distribution, M. V. Ammosov et al., JOSA B, Vol. 9, Issue 8, pp. 1225 (1992).

Multilevel adiabatic population transfer, B. W. Shore et al., Phys. Rev. A 44, 7442 (1991).

Gaussian scaling laws for diffraction: top-hat irradiance and Gaussian beam propagation through a paraxial optical train (Proceedings Paper) D. L. Shealy et al., Proceedings Vol. 1415 Modeling and Simulation of Laser Systems II, 154 (1991).

Pedagogic notes on Thomas-Fermi theory (and on some improvements): atoms, stars, and the stability of bulk matter, Larry Spruch, Rev. Mod. Phys. 63, 151 (1991).

The plasma physics of shock acceleration, Frank C. Jones and Donald C. Ellison, Space Science Reviews, Volume 58, Number 1, (1991).

Special analytical solutions of the damped-anharmonic-oscillator equation, J. M. Dixon et al., Phys. Rev. A 44, 3484 (1991).

Above-threshold ionization in the long-wavelength limit, P. B. Corkum et al., Phys. Rev. Lett. 62, 1259 (1989).

The special relativistic shock tube, Kevin W. Thompson, Journal of Fluid Mechanics 171, 365 (1986).

Absolute photofission cross sections for 235,238U in the energy range 11.5-30 MeV, H. Ries, Phys. Rev. C 29, 2346 (1984).

Squeezed states of light, D. F. Walls, Nature 306, 141 (1983).

Theory of electromagnetic beams, L. W. Davis, Phys. Rev. A 19, 1177 (1979).

Nonspreading wave packets M. V. Berry et al., American Journal of Physics 47(3), 264 (1979).

Stark structure of the Rydberg states of alkali-metal atoms M. L. Zimmerman et al., Phys. Rev. A 20, 2251 (1979).

Ultra-fast switching of infrared radiation by laser-produced carriers in semiconductors, A. J. Alcock and P. B. Corkum, Can. J. Phys. 57(9): 1280 (1979).

Photon Antibunching in Resonance Fluorescence, H. J. Kimble et al., Phys. Rev. Lett. 39, 69 (1977).

Droplet model of the giant dipole resonance, W. D. Myers et al., Phys. Rev. C 15, 2032 (1977).

Pair production and bremsstrahlung of charged leptons, Yung-Su Tsai, Rev. Mod. Phys. 46, 815 (1974).

Phase modulation in far infrared (submillimetre-wave) interferometers. I-mathematical formulation J. Chamberlain, Infrared Physics 11(1), 25 (1971).

Photo-ionization Cross Section Measurements on Lithium, G V Marr, Proc. Phys. Soc. 81 9 (1963).

Precession of the Polarization of Particles Moving in a Homogeneous Electromagnetic Field, V. Bargmann et al., Phys. Rev. Lett. 2, 435 (1959).

On the Origin of the Cosmic Radiation, E. Fermi, Phys. Rev. 75, 1169 (1949).

Photo-Fission in Heavy Elements, G. C. Baldwin, Phys. Rev. 71, 3 (1947).

On the Self-Energy and the Electromagnetic Field of the Electron V. F. Weisskopf , Phys. Rev. 56, 72 (1939).

Note on the Radiation Field of the Electron F. Bloch et al., Phys. Rev. 52, 54 (1937).

The Structure and Entropy of Ice and of Other Crystals with Some Randomness of Atomic Arrangement, Linus Pauling, J. Am. Chem. Soc. 57(12), 2680 (1935).

A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions, J. D. Bernal, et al., J. Chem. Phys. 1(8) 515 (1933).

A Mechanism of Acquirement of Cosmic-Ray Energies by Electrons, W. F. G. Swann, Phys. Rev. 43, 217 (1933).

A Quantum Theory of the Scattering of X-rays by Light Elements, Arthur H. Compton, Phys. Rev. 21, 483 (1923).

Others

Demonstration of slow light in rubidium vapor using single photons from a trapped ion, J. D. Siverns et al., Science Advances 5(10), eaav4651 (2019).

Particle physics experiments based on the AWAKE acceleration scheme, M. Wing, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377, 20180185 (2019).

Producing an Intense, Cool Muon Beam via e+e- Annihilation, D. M. Kaplan et al., arXiv:0707.1546 (2017).

VHEeP: a very high energy electron–proton collider, A. Caldwell et al., M. Eur. Phys. J. C 76: 463 (2016).

Holographic Generation of Highly Twisted Electron Beams, Vincenzo Grillo et al., Phys. Rev. Lett. 114, 034801 (2015).

Observation of Deflection of a Beam of Multi-GeV Electrons by a Thin Crystal, U. Wienands et al., Phys. Rev. Lett. 114, 074801 (2015).

Nanosecond Pulses in a THz Gyrotron Oscillator Operating in a Mode-Locked Self-Consistent Q-Switch Regime, S. Alberti et al., Phys. Rev. Lett. 111, 205101 (2013).

Progress towards ignition on the National Ignition Facility, M. J. Edwards et al., Phys. Plasmas 20, 070501 (2013).

The microphysics and macrophysics of cosmic rays, E.G. Zweibel, Phys. Plasmas 20, 055501 (2013).

IRIDE: Interdisciplinary research infrastructure based on dual electron linacs and lasers M. Ferrario et al., Nucl. Instr, Meth. Res. A in press (2013).

Accelerating science and innovation Societal benefits of European research in particle physics CERN-Brochure-2013-004-Eng, June (2013).

An Introduction to the Theory of Tachyons Ricardo S. Vieira, arXiv:1112.4187 [physics.gen-ph] (2012).

Ultrahigh dispersion of broadband microwave signals by incoherent photonic processing, Y. Park et al., Optics Express, Vol. 18, Issue 14, pp. 14752 (2010).

Subharmonic Sideband Separating Schottky Diode Mixer for Submillimetre Wave Applications, P. Sobis, Thesis, Chalmers University (2010).

The Lorentz force and the radiation pressure of light, T. Rothman, American Journal of Physics 77, 122 (2009).

Introduction to MOLFLOW+: New graphical processing unit-based Monte Carlo code for simulating molecular flows and for calculating angular coefficients in the compute unified device architecture environment R. Kersevan et al., J. Vac. Sci. Technol. A 27, 1017 (2009).

Heat pipe oven of well-defined column density H. Scheingraber, C.R. Vidal, Rev. Sci. Instr. 52(7), 1010 (2009).

Collisions of the Second Kind in a Penning Trap, Levi Schachter, Phys. Rev. Lett. 102, 034801 (2009).

Need for clean energy, waste transmutation revives interest in hybrid fusion-fission reactors, Toni Feder, Physics Today / Volume 62 / Issue 7 / ISSUES AND EVENTS (2009).

Three-Dimensional Visualization of a Human Chromosome Using Coherent X-Ray Diffraction, Yoshinori Nishino, et al., Phys. Rev. Lett. 102, 018101 (2009).

Chaotic Bouncing of a Droplet on a Soap Film, T. Gilet et al., Phys. Rev. Lett. 102, 014501 (2009).

Alkali Metal Vapor Pressures & Number Densities for Hybrid Spin Exchange Optical Pumping, J. Singh et al., U. Virginia (2008).

Demonstration of femtosecond-phase stabilization in 2 km optical fiber, J. Staples et al., Particle Accelerator Conference, 494 (2007).

Systematic Errors, Joel Heinrich and Louis Lyons, Annual Review of Nuclear and Particle Science Vol. 57: 145 (2007).

Femtosecond time-delay X-ray holography, H. Chapman et al., Nature 448, 676-679 (9 August 2007).

Laser drilling of high aspect ratio holes in copper with femtosecond, picosecond and nanosecond pulses, A. Weck et al., Applied Physics A 90(3), 537 (2007).

Solutions of relativistic Newton’s equations for nonconstant fields, R. E. Wooten et al., American Journal of Physics 72, 998 (2004).

Geant4—a simulation toolkit, S. Agostinelli et al., Nucl. Instr. Meth Phys. Res. A 506(3), 250 (2003).

Invariance of the Spectrum of Light on Propagation, E. Wolf, Phys. Rev. Lett. 56, 1370 (1986).

Fusion-fission hybrid system for nuclear waste transmutation (I): Characterization of the system and burn-up calculations, D. Ridikas et al., Progress in Nuclear Energy 48(3), 235 (2006).

Femtosecond diffractive imaging with a soft-X-ray free-electron laser, H. Chapman et al., Nature Physics 2, 839 (2006).

PET Instrumentation and Reconstruction Algorithms in Whole-Body Applications, Gabriele Tarantola et al., Journal of Nuclear Medicine Vol. 44 No. 5 756 (2003).

Data on the velocity slip and temperature jump coefficients, F. Sharipov, Proc. of the 5th Int. Conf. on Thermal and Mechanical Sim. and Exp. in Microelectronics and Microsystems, 2004. EuroSimE, Brussels, Belgium, pp. 243 (2004).

Radiobiologic Principles in Radionuclide Therapy, Amin I. Kassis et al., Journal of Nuclear Medicine Vol. 46 No. 1 (Suppl) 4S-12S (2005).

Rate dependence of short-pulse laser ablation of metals in air and vacuum, A.E. Wynne et al., Applied Physics A 76(3), 373 (2003).

Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam, V. Garcés-Chávez et al., Nature 419, 145 (2002).

Determination of the absolute partial and total cross sections for electron-impact ionization of the rare gases, R. Rejoub et al., Phys. Rev. A 65, 042713 (2002).

Radiation in the Treatment of Cancer, A. L. Boyer et al., Physics Today 55-9, 34 (2002).

The Physics of Intensity-Modulated Radiation Therapy, A. L. Boyer, Physics Today 55-9, 38 (2002).

Direct simulation Monte Carlo study of orifice flow, G. D. Danilatos, AIP Conf. Proc. 585, 924 (2001).

Rarefied gas flow through a thin orifice, F. Sharipov, AIP Conf. Proc. 494, 924 (2001).

Interaction of femtosecond laser pulses with transparent materials, C. Schaffer, Harvard University Dissertation (2001).

Stopping of energetic light ions in elemental matter, J. F. Ziegler, J. Appl. Phys. 85, 1249 (1999).

“DIPOLE MAGNETS” – A COMPUTER-BASED TUTORIAL, R.R. Silbar et al., Proceedings of the 1999 Particle Accelerator Conference, 2790 (1999).

Complete dispersion compensation for 400-fs pulse transmission over 10-km fiber link using dispersion compensating fiber and spectral phase equalizer, S. Shen et al., Photonics Technology Letters 11(7), 827 (1999).

Molecular "π Pulse" for Total Inversion of Electronic State Population, Jianshu Cao et al., Phys. Rev. Lett. 80, 1406 (1998).

Coherent population transfer among quantum states of atoms and molecules, K. Bergmann et al., Rev. Mod. Phys. 70, 1003 (1998).

Data on Internal Rarefied Gas Flows, F. Sharipov et al., J. Phys. Chem. Ref. Data 27, 657 (1998).

Laser Oscillation without Population Inversion in a Sodium Atomic Beam, G. G. Padmabandu et al., Phys. Rev. Lett. 76, 2053 (1996)

Heat-pipe oven for large column densities with a well-defined optical path length, B. Steffes et al., APPL. PHYS. B 62(1), 87 (1996)

A three-section heat-pipe oven for heteronuclear alkali molecules V Bednarska et al., Meas. Sci. Technol. 7 1291 (1996).

Experimental Demonstration of Laser Oscillation without Population Inversion via Quantum Interference in Rb, A. S. Zibrov et al., Phys. Rev. Lett. 75, 1499 (1995).

Electron-impact ionization of atoms, molecules, ions and transient species, K H Becker et al., Plasma Sources Sci. Technol. 4 307 (1995).

Environmental and industrial applications of pulsed power systems, E.L. Neau , IEEE Trans. on Plasma Sci. 22(1), 2 (1994).

Phase compensated fibre-optic links for the LEP RF reference distribution, E. Peschardt et al., Proceedings of the Particle Accelerator Conference, Vol. 3, 1960 (1989).

Diffraction-free beams, J. Durnin et al., Phys. Rev. Lett. 58, 1499 (1985).

Transmission of a stabilised RF phase reference over a monomode fibre-optic link, E. Peschardt et al., Electronics Letters 22(16), 868 (1986).

Prompt muon production in e+e annihilations at 29 GeV, H. Aihara, Phys. Rev. D 31, 2719 (1985).

Population trapping and dispersion in a three-level system P M Radmore et al., Journal of Physics B: Atomic and Molecular Physics 15(4), 561 (1982).

Radiation from the Channeling of 10-GeV Positrons by Silicon Single Crystals, N. A. Filatova et al., Phys. Rev. Lett. 48, 488 (1982).

Inner-shell ionization by relativistic electron impact, D. H. H. Hoffmann et al., Zeitschrift für Physik A Atoms and Nuclei 293(3), 187 (1979).

The fusion hybrid, Hans A. Bethe, Physics Today / Volume 32 / Issue 5 / ARTICLES (1979).

Schlieren experiment 300 years ago, J. Rienitz, Nature 254, 293 - 295 (27 March 1975).

Selected Values of Evaporation and Condensation Coefficients for Simple Substances G. M. Pound, J. Phys. Chem. Ref. Data 1, 135 (1972).

Impact ionization of Na, K, Rb and Cs by electron and proton impacts A N Tripathi et al., Journal of Physics B: Atomic and Molecular Physics 2(2), (1969).

Heat-pipe oven: a new, well-defined metal vapor device for spectroscopic measurements C.R. Vidal and J. Cooper, J. Appl. Phys. 40(8), 3370 (1969)

Electron Impact Ionization Cross-Section Data for Atoms, Atomic Ions, and Diatomic Molecules: I. Experimental Data L. J. Kieffer et al., Rev. Mod. Phys. 38, 1 (1966).

Absolute Cross Sections of Lithium and Other Alkali Metal Atoms for Ionization by Electrons, R.H. McFarland et al., Phys. Rev. 137, A1058 (1965).

Theory of FM laser oscillation , S. Harris et al., IEEE J. Quantum Electronics, 1(6), 245 (1965).

Petrichor and Plant Growth, I. J. Bear et al., Nature 207, 1415 - 1416 (25 September 1965).

Studies of the Mechanism of Electron-Ion Recombination. I, M A Biondi, Phys. Rev. 129, 1181 (1963).

Interference Filters and Fabry-Perot Interferometers for the Far Infrared, K. F. Renk et al., Applied Optics, Vol. 1, Issue 5, 643 (1962).

Interferometer Action of a Parallel Pair of Wire Gratings, JOSEPH P. CASEY,JR. et al., JOSA, Vol. 42, Issue 12, 971 (1952).

Last Updated 01/03/2024, Website Designed by M.Loi e-mail: mariloi1989@yahoo.com ©M. Loi