Max Planck Geselshaft Max Planck Geselshaft
dr. patric muggli
Home Conferences Links Pictures
Experiments In The Press Journals Accelerators Keeping Up
My Picture PWFA Movie Jukebox Quickies
AWAKE@MPP Publications E209
  1986 1989 1990 1991 1992 1993 1995 1996 1998 1999
  2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
  2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
  2020 2021 2022 2023 2024
Click HERE for a version WITH abstracts

Experimental Observation of Motion of Ions in a Resonantly Driven Plasma Wakefield Accelerator
M. Turner et al., submitted (2024), arXiv:2406.16361 [physics.plasm-ph]

Beam physics studies for a high charge and high beam quality laser-plasma accelerator
S. Marini et al., Acceprted for publication in Phys. Rev. Accelerators and Beams (2024)

Filamentation of a Relativistic Proton Bunch in Plasma
L. Verra et al., AWAKE Collaboration, Phys. Rev. E 109, 055203 (2024), arXiv:2312.13883 [physics.plasm-ph]

Hosing of a long relativistic particle bunch in plasma
T. Nechaeva et al., AWAKE Collaboration, Phys. Rev. Lett. 132, 075001 (2024), arXiv:2309.03785 [physics.plasm-ph]

Development of the Self-Modulation Instability of a Relativistic Proton Bunch in Plasma
L. Verra et al., AWAKE Collaboration, Physics of Plasmas 30, 083104 (2023), arXiv:2305.05478 [physics.plasm-ph]

Mitigation of the onset of hosing in the linear regime through plasma frequency detuning
M. Moreira et al., Phys. Rev. Lett. 130, 115001 (2023), arXiv:2207.14763 [physics.plasm-ph]

Uniform onset of the long proton bunch self-modulation seeded by an electron bunch in an overdense plasma
K.-J. Moon et al., Phys. Rev. Accel. Beams 26, 111301 (2023)

Controlled Growth of the Self-Modulation of a Relativistic Proton Bunch in Plasma
L. Verra et al., AWAKE Collaboration, Phys. Rev. Lett. 129, 024802 (2022), arXiv.2203.13752 [physics.acc-ph]

Contribution Snowmass 2022, White Paper: AWAKE, Plasma Wakefield Acceleration of Electron Bunches for Near and Long Term Particle Physics Applications
P.Muggli, AWAKE Collaboration arXiv:2203.09198 [physics.acc-ph]

European Strategy for Particle Physics - Accelerator R&D Roadmap
Editor: Nicolas MounetCERN Yellow Reports: Monographs, Vol. 1 (2022): arXiv:2201.07895 [physics.acc-ph]

European Strategy for Particle Physics - Accelerator R&D Roadmap, Chapter 4: High-gradient plasma and laser accelerators
R. Assman et al.CERN Yellow Reports: Monographs, Vol. 1 (2022): arXiv:2201.07895 [physics.acc-ph]

Simulation and Experimental Study of Proton Bunch Self-Modulation in Plasma with Linear Density Gradients
P.I. Morales Guzmán et al., Phys. Rev. Accel. Beams 24, 101301 (2021), arXiv:2107.11369 [physics.plasm-ph]

Long range propagation of ultrafast, ionizing laser pulses in a resonant nonlinear medium
G. Demeter et al., Phys. Rev. A 104, 033506 (2021), arXiv:2103.14530 [physics.optics]

Transition between Instability and Seeded Self-Modulation of a Relativistic Particle Bunch in Plasma
F. Batsch et al., Phys. Rev. Lett. 126, 164802 (2021), arXiv:2012.09676 [physics.plasm-ph]

2020 roadmap on plasma accelerators
F. Albert et al., New J. Phys. 23, 031101 (2021)

Proton Bunch Self-Modulation in Plasma with Density Gradient
F. Braunmueller et al., Phys. Rev. Lett. 125, 264801 (2020), arXiv:2007.14894 [physics.plasm-ph]

Seeding self-modulation of a long proton bunch with a short electron bunch
P. Muggli et al., 2020 J. Phys.: Conf. Ser. 1596 012066 (2020), arXiv:2002.02189 [physics.acc-ph] (2020).

Predicting the Trajectory of a Relativistic Electron Beam for External Injection in Plasma Wakefields
F. Peña Asmus et al., J. Phys.: Conf. Ser. 1596 012048 (2020)

Determination of the Charge per Micro-Bunch of a Self-Modulated Proton Bunch using a Streak Camera
A.-M. Bachmann et al., arXiv:1912.00779 [physics.acc-ph] (2019).

Study of external electron beam injection into proton driven plasma wakefields for AWAKE Run2
L. Verra et al., J. Phys.: Conf. Ser. 1596 012007 (2020)

Physics to plan AWAKE Run 2
P. Muggli, J. Phys.: Conf. Ser. 1596 012008 (2020)

Experimental Study of Wakefields Driven by a Self-Modulating Proton Bunch in Plasma
M. Turner, P. Muggli, et al.,, Phys. Rev. Accel. Beams 23, 081302, (2020), arXiv:2005.05277 [physics.acc-ph]

Electron beam characterization with beam loss monitors in AWAKE
L. Verra et al., Phys. Rev. Accel. Beams 23, 032803 (2020), arXiv:1912.05009 [physics.acc-ph]

Interaction of Ultra Relativistic e- e+ Fireball Beam with Plasma
Nitin Shukla, Patric Muggli, Samuel F Martins, Jorge Vieira and Luis O Silva, New Journal of Physics 22, 011330 (2019)

Plasma wakefield accelerators
E. Gschwendtner & P. Muggli, Nature Reviews Physics 1, 246 (2019).

Viewpoint: A Metamaterial for Next Generation Particle Accelerators
P. Muggli, Phys. Rev. Lett., Physics ViewPoint, January 7, (2019).

Influence of proton bunch parameters on a proton-driven plasma wakefield acceleration experiment
M. Moreira, Phys. Rev. Accel. Beams 22, 031301 (2019), arXiv:1811.08277.

Experimental Observation of Proton Bunch Modulation in a Plasma at Varying Plasma Densities
The AWAKE Collaboration, Phys. Rev. Lett. 122, 054802 (2019), arXiv:1809.04478

Experimental Observation of Plasma Wakefield Growth Driven by the Seeded Self-Modulation of a Proton Bunch
M. Turner et al., Phys. Rev. Lett. 122, 054801 (2019), arXiv:1809.01191

Schlieren imaging for the determination of the radius of an excited rubidium column
A.-M. Bachmann et al., Nucl. Instr. and Meth. in Phys. Res. A, 909, 387 (2018).

Interferometer-based high-accuracy white light measurement of neutral rubidium density and gradient at AWAKE
F. Batsch et al., Nucl. Instr. and Meth. in Phys. Res. A, 909, 359 (2018).

Acceleration of electrons in the plasma wakefield of a proton bunch
AWAKE Collaboration, Nature (London) 561, 363 (2018).

Signatures of the self-modulation instability of relativistic proton bunches in the AWAKE experiment
M. Moreira et al., Nucl. Instr. and Meth. in Phys. Res. A, 909, 343 (2018).

Simulation study of an LWFA-based electron injector for AWAKE Run 2
B. Williamson et al., Nucl. Instr. and Meth. in Phys. Res. A, 909, 126 (2018).

A method to determine the maximum radius of defocused protons after self-modulation in AWAKE
M. Turner et al., Nucl. Instr. and Meth. in Phys. Res. A, 909, 123 (2018).

Novel diagnostic for precise measurement of the modulation frequency of Seeded Self-Modulation via Coherent Transition Radiation in AWAKE
F. Braunmueller et al., Nucl. Instr. and Meth. in Phys. Res. A, 909, 76 (2018).

Seeding of the self-modulation in a long proton bunch by charge cancellation with a short electron bunch
M. Huether et al., Nucl. Instr. and Meth. in Phys. Res. A, 909, 67 (2018).

Summary of Working Group 8: Advanced and Novel Accelerators for High Energy Physics
B. Cros et al., Nucl. Instr. and Meth. in Phys. Res. A, 909, 460 (2018).

Conditions for the onset of the current filamentation instability in the laboratory
N. Shukla et al., J. Plasma Phys. 84(3) 905840302 (2018).

Emittance preservation of an electron beam in a loaded quasi-linear plasma wakefield
Veronica K. Berglyd Olsen et al., Phys. Rev. Accel. Beams 21, 011301 (2018), arXiv:1710.04858.

A Rubidium Vapor Source for a Plasma Source for AWAKE
G. Plyushchev et al., Journal of Physics D: Applied Physics, 51(2), 025203 (2017).

AWAKE readiness for the study of the seeded self-modulation of a 400GeV proton bunch
P. Muggli et al., Plasma Physics and Controlled Fusion, 60(1) 014046 (2017).

GHz Modulation detection using a streak camera: suitability of streak cameras in the AWAKE experiment
K. Rieger et al., Review of Scientific Instruments 88, 025110 (2017).

AWAKE: A Proton-Driven Plasma Wakefield Acceleration Experiment at CERN
C.Bracco et al., Nuclear and Particle Physics Proceedings 273-275, 175 (2016).

Proton-Beam-Driven Plasma Acceleration
E. Adli and P. Muggli, Rev. Accl. Sci. Tech. 09, 85 (2016).

Staging optics considerations for a plasma wakefield acceleration linear collider
C.A. Lindstrøm et al., Nucl. Instr. and Meth. in Phys. Res. A 829, 224 (2016).

An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir
E. Öz et al., Nucl. Instr. and Meth. in Phys. Res. A 829, 321 (2016).

Laser pulse propagation in a meter scale rubidium vapor/plasma cell in AWAKE experiment
A. Joulaei et al., Nucl. Instr. and Meth. in Phys. Res. A 829, 339 (2016).

AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN
E. Gschwendtner et al., Nucl. Instr. and Meth. in Phys. Res. A 829, 76 (2016).

Electron trapping and acceleration by the plasma wakefield of a self-modulating proton beam
K. V. Lotov et al., Phys. Plasmas 21, 123116 (2014).

High-efficiency acceleration of an electron beam in a plasma wakefield accelerator
M. Litos et al., Nature 515, 92 (2014).

Laser Ionized Preformed Plasma at FACET
S.Z. Green et al., Plasma Phys. Control. Fusion 56, 084011 (2014).

Self-modulation instability of ultra-relativistic particle bunches with finite rise times
J. Vieira et al., Plasma Phys. Control. Fusion 56, 084014 (2014).

Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics
AWAKE Collaboration, Plasma Phys. Control. Fusion 56 084013 (2014), available at arXiv:1401.4823.

Hosing Instability Suppression in Self-modulated Plasma Wakefields
J. Vieira et al., Phys. Rev. Lett. 112, 205001 (2014).

Proceedings of the first European Advanced Accelerator Concepts Workshop 2013: Summary of working group 1: Electron beams from plasmas
P. Muggli and Z. Najmudin, Nucl. Instr. Meth. Phys. Res. A 740(11), 39 (2014).

A novel Rb vapor plasma source for plasma wakefield accelerators
E. Oz et al., Nucl. Instr. Meth. Phys. Res. A 740(11), 197 (2014).

The effect of plasma radius and profile on the development of self-modulation instability of electron bunches
Y. Fang et al., Phys. Plasmas 21, 056703 (2014).

Seeding of the Self-modulation Instability of a long Electron Bunch in a Plasma
Y. Fang et al., Phys. Rev. Lett. 112, 045001 (2014).

Beam loading by distributed injection of electrons in a plasma wakefield accelerator
N. Vafaei-Najafabadi et al., Phys. Rev. Lett. 112, 025001 (2014).

Interaction of Ultra Relativistic e- e+ Fireball Beam with Plasma
P. Muggli et al., arXiv:1306.4380 (2013).

Strategies for mitigating the ionization-induced beam head erosion problem in an electron-beam-driven plasma wakefield accelerator
W. An et al., Phys. Rev. ST Accel. Beams 16, 101301 (2013).

Experimental Study of Current Filamentation Instability
B. Allen et al., Phys. Rev. Lett. 109, 185007 (2012).

Experimental observation of suppressing CSR-induced beam energy spread with shielding plates
V. Yakimenko et al., Phys. Rev. Lett. 109, 164802 (2012).

Dielectric wakefield acceleration of a relativistic electron beam in a slab-symmetric dielectric lined waveguide
G. Andonian et al., Phys. Rev. Lett. 108, 244801 (2012).

A proposed demonstration of an experiment of proton-driven plasma wakefield acceleration based on CERN SPS
G. Xia et al., J. Plasma Phys., 1 (2012).

Transverse self-modulation of ultra-relativistic lepton beams in the plasma wakefield accelerator
J. Vieira et al., Phys. Plasmas 19, 063105 (2012).

Teravolt-per-meter beam and plasma fields from low-charge femtosecond electron beams
J.B. Rosenzweig et al., Nucl. Inst. Meth. Phys. Res. A, 653(1), 98 (2011).

Phase Velocity and Particle Injection in a Self-Modulated Proton-Driven Plasma Wakefield Accelerator
A. Pukhov et al., Phys. Rev. Lett. 107, 145003 (2011).

Resonant Excitation of Coherent Cerenkov Radiation in Dielectric Lined Waveguides
G. Andonian et al., Appl. Phys. Lett. 98, 202901 (2011).

Hollow plasma channel for positron plasma wakefield acceleration
W. D. Kimura et al., Phys. Rev. ST Accel. Beams 14, 041301 (2011).

Effect of temperature on ion motion in future plasma wakefield accelerators
R. Gholizadeh et al., Phys. Rev. ST Accel. Beams 14, 021303 (2011).

Scaling of the longitudinal electric field and transformer ratio in a nonlinear plasma wakefield accelerator
I. Blumenfeld et al., Phys. Rev. ST Accel. Beams 13, 111301 (2010).

A Simple Method for Generating Adjustable Trains of Picosecond Electron Bunches
P. Muggli et al., Phys. Rev. ST Accel. Beams 13, 052803 (2010).

Plasma Wakefield Acceleration Experiments at FACET
M.J. Hogan et al., New J. Phys. 12, 055030 (2010).

Energy Gain Scaling with Plasma Length and Density in the Plasma Wakefield Accelerator
P. Muggli et al., New J. Phys. 12, 045022 (2010).

Preservation of beam emittance in the presence of ion motion in future plasma wakefield-based colliders
R. Gholizadeh et al., Phys. Rev. Lett. 104, 155001 (2010).

Optimization of Positron Trapping and Acceleration in an Electron-beam-driven Plasma Wakefield Accelerator
X. Wang et al., Phys. Rev. ST Accel. Beams 12, 051303 (2009).

Enhancing parallel quasi-static particle-in-cell simulations with a pipelining algorithm
B. Feng et al., Journal of Computational Physics, 228(15), 5340 (2009).

Review of High-energy Plasma Wakefield Experiments
P. Muggli and M.J. Hogan, Comptes Rendus Physique, 10(2-3), 116 (2009).

Transverse Emittance and Current of Multi-GeV Trapped Electrons in a Plasma Wakefield Accelerator
N. Kirby et al., Phys. Rev. ST Accel. Beams 12, 051302 (2009).

A High Density Hydrogen-Based Capillary Plasma Source for Particle-Beam-Driven Wakefield Accelerator Applications
H. Chen et al., IEEE Trans. Plasma Sci. 37(3), 456 (2009).

Positron Injection and Acceleration on the Wake Driven by an Electron Beam in a Foil and Gas Plasma
X. Wang et al., Phys. Rev. Lett. 101, 124801 (2008).

Generation of Trains of Electron Microbunches with Adjustable Sub-picosecond Spacing
P. Muggli et al., Phys. Rev. Lett. 101, 054801 (2008).

Halo Formation and Emittance Growth of Positron Beams in Plasmas
P. Muggli et al., Phys. Rev. Lett. 101, 055001 (2008).

Gigavolt per Meter Breakdown Limits on Wakefields Driven by Electron Beams in Dielectric Structures
M. C. Thompson et al., Phys. Rev. Lett. 100, 214801 (2008).

High-Gradient Plasma Wakefield Acceleration with Two Subpicosecond Electron Bunches
E. Kallos et al., Phys. Rev. Lett. 100, 074802 (2008).

Hosing Instability in the Blow-Out Regime for Plasma-Wakefield Acceleration
C. Huang et al., Phys. Rev. Lett. 99, 255001 (2007).

Ionization-induced electron trapping in ultrarelativistic plasma wakes
E. Oz et al., Phys. Rev. Lett. 98, 084801 (2007).

Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator
I. Blumenfeld et al., Nature 445, 741-744 (15 February 2007).

Positron Production by X Rays Emitted by Betatron Motion in a Plasma Wiggler
D. K. Johnson et al., Phys. Rev. Lett. 97, 175003 (2006).

Plasma Production via Field Ionization
C.L. O'Connell et al., Phys. Rev. ST Accel. Beams 9, 101301 (2006).

Hose Instability and Wake Generation by an Intense Electron Beam in a Self-Ionized Gas
S. Deng et al., Phys. Rev. Lett. 96, 045001 (2006).

Multi-GeV Energy Gain in a Plasma-Wakefield Accelerator
M. J. Hogan et al., Phys. Rev. Lett. 95, 054802 (2005).

Possibility of a multibunch plasma afterburner for linear colliders
R. Maeda et al., Phys. Rev. ST Accel. Beams 7, 111301 (2004).

Meter-Scale Plasma-Wakefield Accelerator Driven by a Matched Electron Beam
P. Muggli et al., Phys. Rev. Lett. 93, 014802 (2004).

Plasma Wakefield Acceleration in Self-ionized Gas or Plasmas
S. Deng et al., Phys. Rev. E68, 047401 (2003).

Plasma-Wakefield Acceleration of an Intense Positron Beam
B.E. Blue et al., Phys. Rev. Lett. 90, 214801 (2003).

Ultrarelativistic-Positron-Beam Transport through Meter-scale Plasmas
M. J. Hogan et al., Phys. Rev. Lett. 90, 205002 (2003).

Dynamic Focusing of an Electron Beam through a Long Plasma
C. O'Connell et al., Phys. Rev. ST Accel. Beams 5, 121301 (2002).

High energy density plasma science with an ultrarelativistic electron beam
C. Joshi et al., Phys. Plasmas 9, 1845 (2002).

Transverse Envelope Dynamics of a 28.5-GeV Electron Beam in a Long Plasma
C. E Clayton et al., Phys. Rev. Lett. 88, 154801 (2002).

X-Ray Emission from Betatron Motion in a Plasma Wiggler
S. Wang et al., Phys. Rev. Lett. 88, 135004 (2002).

Energy Doubler for a Linear Collider
S. Lee et al., Phys. Rev. ST Accel. Beams 5, 121301 (2002).

Measurements of Radiation near an Atomic Spectral Line from the Interaction of a 30 GeV Electron Beam and a Long Plasma
P. Catravas et al., Phys. Rev. E 64, 046502 (2001).

Collective Refraction of a Beam of Electrons at a Plasma-gas Interface
P. Muggli et al., Phys. Rev. ST Accel. Beams 4, 091301 (2001).

Boundary effects: Refraction of a particle beam
P. Muggli et al., Nature 411, 43-43 (03 May 2001).

Simulations of Cerenkov wake radiation sources
N. Spence et al., Phys. Plasmas 8, 4995 (2001).

High power radiation from ionization fronts in a static electric field in a waveguide
J. R. Hoffman et al., J. Appl. Phys. 90, 1115 (2001).

E-157: A 1.4-m-long plasma wake field acceleration experiment using a 30 GeV electron beam from the Stanford Linear Accelerator Center Linac
M. J. Hogan et al., Phys. Plasmas 7, 2241 (2000).

Guest Editorial, Special Issue on Laser and Plasma Accelerators, IEEE Transactions on Plasma Science
P. Muggli and T.M. Antonsen, Jr.,IEEE Trans. On Plasma Sci., 28(4), p. 1054 (2000).

Investigation of a channeling high intensity laser-beam in underdense plasmas
Z. Najmudin et al., IEEE Trans. On Plasma Sci., 28(4), p. 1057 (2000).

Plasma Source Test and Simulation Results for the Underdense Plasma Lens Experiment at the UCLA Neptune Laboratory
H. Suk et al., IEEE Transactions on Plasma Science, vol.28, no.1, pp.271-7 (2000).

Nanocomposite of semiconducting ferroelectric antimony sulphoiodide dots-doped glasses
Y.H. Xu et al., Ferroelectrics, Vol. 230: (1-4), pp. 313-322 (1999).

Homogeneous meter-long plasma source for advanced accelerator applications
P. Muggli et al., IEEE Trans. on Plasma Science 27(3), pp. 791-799 (1999).

The Neptune photoinjector
J. Rosenzweig et al., Nuclear Instruments and Methods in Physics Research A 410, pp. 437-451 (1998).

Plasma Wave Generation in a Self-Focused Channel of a Relativistically Intense Laser Pulse
C. E. Clayton et al., Phys. Rev. Lett. 81, 100-103 (1998).

Generation of microwave pulses from the static electric field of a capacitor array by an underdense, relativistic ionization front
P. Muggli et al., Phys. Plasmas 5, 2112 (1998).

Observation of Electron Energies Beyond the Linear Dephasing Limit from a Laser-Excited Relativistic Plasma Wave
D. Gordon et al., Phys. Rev. Lett. 80, 2133-2136 (1998).

Generation of ultrashort, discrete spectrum microwave pulses using the dc to ac radiation converter
P. Muggli et al., Appl. Phys. Lett. 72, 19 (1998).

Second harmonic generation in PVD waveguides
X.Y. Zhu et al., Ferroelectrics 24(2), (1996).

Demonstration of Microwave Generation from a Static Field by a Relativistic Ionization Front in a Capacitor Array
C. H. Lai et al., Phys. Rev. Lett. 77, 4764-4767 (1996).

Photoemission from diamond and fullerene films for advanced accelerator application
P. Muggli et al., IEEE Trans. on Plasma Science 24(2), 428 (1996).

Nonlinear Optical Properties of Epitaxial KNbO3 Thin Films via Sol-Gel Technique
C.H. Cheng et al., Ceramic Transactions 55, 243-250 (1995).

Two-color photoemission produced by femtosecond laser pulses on copper
P. Muggli et al., JOSA B, Vol. 12, Issue 4, pp. 553 (April 1995).

High power gyrotrons at 8 GHz : 8 GHz gyrotron development at the Centre de Recherches en Physique des Plasmas, Lausanne
P. Muggli and M.Q. Tran, in "Gyrotron Oscillators, their Principles and Practice," C.J. Edgcombe editor, published by Taylor and Francis, pp. 295-303, (1993).

Parasitic Oscillation in and Suppression of a Gyrotron Backward Wave Mode in a Low-Q 8 GHz Gyrotron
P. Muggli et al., IEEE Transactions on Plasma Science. Vol. 20, No. 4, August (1992).

Etude d'un gyrotron à cavité cylindrique: influence des réflexions de puissance et de l'oscillation d'un mode propageant.
P. Muggli, Thèse de doctorat, EPFL, #964 (Ph.D Dissertation)

Velocity ratio measurement using the frequency of the gyro-backward wave
P. Muggli et al., Physics of Fluids B-3(6), pp. 1315-1318, (1991).

Experimental measurement of competition between fundamental and second harmonic emission in a quasi-optical gyrotron
S. Alberti et al., Phys. Fluids B2(7) (Letters), pp. 2544-2546, (1990).

Effect of power reflection on the operation of a low-Q 8 GHz gyrotron
P. Muggli et al., IEEE Transactions on Microwave Theory and Techniques, MTT-38(9), pp.1345-1351, (1990).

Experimental measurements on a 100 GHz frequency tunable quasi-optical gyrotron
S. Alberti et al., Phys. Fluids B2(7), pp. 1654-1661 (1990).

Prospects for high power, quasi-optical gyrotrons operating in the millimeter wave range
T.M. Tran et al., IEEE Trans. Elect. Device 36, pp. 1983-1990 (1989).

Multimode simulation of the frequency spectrum of a quasi-optical gyrotron
M.Q. Tran et al., Int. J. Electron. 61(6), pp. 1029-1039 (1986).


Last Updated 07/16/2024, Website Designed by M.Loi e-mail: mariloi1989@yahoo.com ©M. Loi