

- 1. Einführung
- 2. Beschleuniger
- 3. Detektoren
- 4. Bewegungsgleichungen und Symmetrien
- 5. Das Quark-Modell und die CKM-Matrix
- 6. CP-Verletzung im Standardmodell
- 7. Proton- und Photonstruktur
- 8. Elektroschwache Präzisionsmessungen
- 9. Das Higgs-Boson
- 10. Neutrino-Massen und Neutrino-Oszillationen



- In Teilchenkollisionen werden viele verschiedene, meist kurzlebige, Teilchen erzeugt.
- In den Detektoren werden die stabilen Teilchen  $e^-$ , p,  $\gamma$  und eine Reihe langlebiger Teilchen z.B.  $\mu^{\pm}$ ,  $\pi^{\pm}$ ,  $\pi^0$ , n,  $K_S$ ,  $K_L$  nachgewiesen.
- Die wichtigen Messgrößen sind  $\vec{x}$ , t, E,  $\vec{p}$ ,  $\vec{v}$  und m.
- Zum Teilchennachweis sind prinzipiell alle Arten von Wechselwirkungen der Teilchen mit dem Material der Nachweiselemente geeignet. Die Wichtigste ist die elektro-magnetische Wechselwirkung, gefolgt von der starken Wechselwirkung.
- Für geladene Teilchen benutzt man hauptsächlich den Energieverlust, hervorgerufen durch lonisation, (dE/dx), und durch Photon-Bremsstrahlung.
- Für Photonen werden Photoeffekt, Compton-Streuung und Paar-Erzeugung benutzt.
- Andere neutrale Teilchen, z.B. Neutronen, übertragen erst in Kernreaktionen ihre Energie auf geladene Teilchen, die dann detektiert werden.
- In modernen Collider-Experimenten werden nahe am Wechselwirkungspunkt hochauflösende Halbleiterdetektoren zur Orts- und Impulsmessung verwandt, gefolgt von Kalorimetern zum Nachweis elektromagnetischer und hadronischer Energie.
- Der Teilchennachweis ist immer ein Kompromiss zwischen viel Materie zur Erreichung großer Signale, aber auch starker Beeinflussung, und wenig Materie zur exakten Vermessung der Trajektorien.



# Das Bauprinzip von Teilchen-Detektoren und ein Beispiel

### Mit dem Zwiebelschalenprinzip ...



#### ... kriegen wir euch (fast) alle



### Elektromagnetisches Kalorimeter (e, $\gamma$ )

- Aufschauern im Absorber (z.B. Bleiplatten).
- Messen im sensitiven Material (z.B. Licht in einem Szintillator).
- Die Lichtmenge gibt dann Aufschluß über die Teilchenenergie.



**T03** 



## **Der ATLAS Detektor**

D712/mb-26/06



Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

J T03

**Richard Nisius** 

Page 4



| Symbol                            | Definition                                    | Wert oder Dimension                                           |
|-----------------------------------|-----------------------------------------------|---------------------------------------------------------------|
| $\alpha$                          | Feinstrukturkonstante                         | 1/137.03599976(50)                                            |
| m                                 | Masse des einfallenden Teilchens              | MeV/c <sup>2</sup>                                            |
| E                                 | Energie des einfallenden Teilchens            | MeV                                                           |
| Т                                 | kinetische Energie des einfallenden Teilchens | MeV                                                           |
| $oldsymbol{z} oldsymbol{\cdot} e$ | Ladung des einfallenden Teilchens             | <i>z</i> ⋅ 1.6021 ⋅ 10 <sup>−19</sup> C                       |
| $r_{ m e}$                        | klassischer Elektronenradius                  | 2.817940285(31) fm                                            |
| $N_{ m A}$                        | Avogadro-Zahl                                 | 6.02214199(47) · 10 <sup>-23</sup> / mol                      |
| Z; A                              | Atomzahl; Atomgewicht des Absorbers           | —; g/mol                                                      |
| K                                 | $4\pi N_{ m A}r_{ m e}m_{ m e}c^2$            | $0.307075 \text{ MeV cm}^2$                                   |
| δ                                 | Dichtekorrektur zur Ionisation                |                                                               |
| $E_p$                             | Plasmaenergie                                 | $28.816 \sqrt{ ho \langle Z/A  angle}$ eV, $ ho$ in g/cm $^3$ |
| $X_0$                             | Strahlungslänge                               | g/cm <sup>2</sup>                                             |
| $\lambda$                         | Absorptionslänge                              | g/cm <sup>2</sup>                                             |
| $T_{ m max}$                      | Maximal übertragbare kinetische Energie       | MeV                                                           |
| Ι                                 | Mittlere Ionisationsenergie                   | eV                                                            |
| $E_c; E_{\mu c}$                  | Kritische Energie für Elektronen; Myonen      | MeV; GeV                                                      |



## **Ionisationsverlust geladener Teilchen**

**Die Bethe-Bloch Formel** 



- Die Bethe Bloch Formel beschreibt die Ionisation und ist nur im mittleren Impulsbereich gültig.
  - Atomare Effekte bei niedrigsten Impulsen und die Bremsstrahlung bei sehr hohen Impulsen werden separat beschrieben.
  - Die Haupteigenschaften sind:
  - 1)  $\frac{Z}{A}$  Abhängigkeit, favorisiert *H*.
  - 2)  $1/\beta^2$  bei niedrigen Impulsen, favorisiert leichte Teilchen.
  - 3) Minimum bei  $p/m \approx 3 4$ ,  $\Leftrightarrow$ Minimum Ionising Particle (MIP).
  - 4) Logarithmischer Anstieg bei hohen Impulsen.
  - 5) Dichteeffekt durch Polarisation des Absorbers.

### Die wichtigste Formel zum Teilchennachweis.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg



## Berechnung des maximalen Energieübertrags

- Streuung: 
$$\begin{pmatrix} E \\ \vec{p} \end{pmatrix} + \begin{pmatrix} m_e \\ \vec{0} \end{pmatrix} = \begin{pmatrix} E' \\ \vec{p'} \end{pmatrix} + \begin{pmatrix} E_e \\ \vec{p_e} \end{pmatrix}$$

- Impulserhaltung:  ${p'}^2 = p^2 + p_e^2 - 2pp_ec_s$ , mit  $c_s \equiv \cos \theta_{p,p_e}$ 

- Energieerhaltung:  $(E + m_e - E_e)^2 = E'^2 = p^2 + p_e^2 - 2pp_ec_s - m^2$ 

$$0 = (E + m_e)^2 - 2E_e(E + m_e) + E_e^2 - p^2 - p_e^2 + 2pp_ec_s - m^2$$
  

$$0 = E^2 + 2m_eE + m_e^2 - 2E_e(E + m_e) + m_e^2 - p^2 + 2pp_ec_s - m^2$$
  

$$0 = m_eE + m_e^2 - E_e(E + m_e) + pp_ec_s = -(E_e - m_e)(E + m_e) + pc_s\sqrt{E_e^2 - m_e^2}$$
  

$$- \operatorname{mit} E_{\operatorname{kin}} = E_e - m_e \quad \operatorname{folgt} \quad E_{\operatorname{kin}}^2(E + m_e)^2 = p^2c_s^2E_{\operatorname{kin}}(E_{\operatorname{kin}} + 2m_e)$$

$$E_{\rm kin} = 2m_e \frac{p^2 c_s^2}{(E+m_e)^2 - p^2 c_s^2} \quad \Rightarrow \qquad T_{\rm max} = 2m_e \frac{p^2}{(E+m_e)^2 - p^2} = \frac{2m_e \gamma^2 \beta^2 c^2}{1 + 2\gamma \frac{m_e}{m} + \frac{m_e^2}{m^2}}$$

Elektronen können ihre ganze kinetische Energie auf Elektronen des Materials übertragen.



## **Verschiedene Teilchen und Materialien**

**Verschiedene Materialien** 

**Die Z-Abhängigkeit** 



Faustformel:  $(dE/dx)_{\min} = 1 - 2$  MeV cm<sup>2</sup>/g bei  $p \approx 3$  Ruhemassen.

**Einblicke in die Teilchenphysik** 

SS 2003 Uni Augsburg

**T03** 



## **Blasenkammer - das Prinzip**



**Prinzipskizze** 

#### Eigenschaften

- Benutzte Materialien sind H<sub>2</sub>, Ne, C<sub>3</sub>, Freon.
- Die Flüssigkeit wird nahe des Siedepunkts gehalten, was mehrere bar Druck erfordert.
- Vor dem Teilchendurchgang wird der Druck erniedrigt.
- Die Teilchen erzeugen dann Siedekeime.
- Lebensdauer der Keime  $\Delta t_{\text{Blase}} = 10^{-11} 10^{-10}$  s.  $\Rightarrow$  Externer Trigger ist nötig!



– Kammer-Zyklus ca. 100 ms, schlechte  $\pi/\mu$  Trennung.

### Blasenkammern sind für die meisten heutigen Anwendungen ungeeignet.

SS 2003 Uni Augsburg

Zeit



## Blasenkammer - ein Beispiel zum Genießen



An fixed-target Exp. werden Blasenkammern wegen der guten Auflösung weiter benutzt.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg



## **OPAL Jetkammer**

### Ein Sektor in Azimuth



### Die gespannten Drähte



#### **Der fertige Detektor**



- -0.25 < R < 1.85 m
- -L = 4 m
- 24 Sektoren in Azimuth
- 159 Drähte / Sektor
- E = 890 V/cm
- Ar / CH<sub>4</sub> / C<sub>4</sub>H<sub>10</sub> =
  - (88.2 / 9.8 / 2.0)%
  - + 500 ppm Wasser
- -p=4 bar

Die OPAL Jetkammer arbeitete von 1989 - 2000.

SS 2003 Uni Augsburg

**T03** 

**Richard Nisius** 

Page 11



## Energieverlustmessung mit der OPAL Jetkammer



Für niedrige Impulse ist die Teilchentrennung mittels dE/dx sehr effizient.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg



- Die Elektronen und Ionen driften im Gasvolumen, z.B. in Ar/CO<sub>2</sub>.

Bewegungsgleichung: $m\frac{d\vec{v}}{dt} = q\left(\vec{E} + \vec{v} \times \vec{B}\right) + \frac{m\vec{v}}{\tau}$ Mittlere Zeit zwischen zwei Stößen: $\tau = \frac{\mu m}{q}$ mit $\mu =$  Beweglichkeit.Zyklotronfrequenz: $\omega = \frac{qB}{m}$ 

- Die asymptotische Driftgeschwindigkeit,  $\frac{d\vec{v}}{dt} \equiv 0$ , ergibt sich für  $\vec{E} \perp \vec{B}$ zu:  $v = \frac{\mu E}{\sqrt{1+\omega\tau}} = \frac{E}{\sqrt{B^2+1/\mu^2}} = \frac{\mu E}{\sqrt{1+(\mu B)^2}}$ .

- Typische Driftgeschwindigkeit ist  $v = 5 \frac{cm}{\mu s}$ . Mit  $\sigma_t = 1$  ns folgt dann für die Ortsauflösung:  $\sigma_x = v \cdot \sigma_t = 50 \ \mu m$ .
- Der Winkel  $\alpha$  zwischen  $\vec{E}$  und  $\vec{v}$  ist der Lorentzwinkel,  $\tan \alpha = \omega \tau = \mu B$ .
- Beispiel:  $E = 500 \frac{V}{m}$ ,  $v(B = 0) = 3.5 \frac{cm}{s}$  und  $\tan \alpha = 0^{\circ}$ ,  $\Rightarrow v(B = 1.5) = 2.4 \frac{cm}{s}$  und  $\tan \alpha = 46^{\circ}$ .

Große Driftkammern werden in vielen Detektoren zur Impulsmessung benutzt.



## Halbleiterdetektoren



Die Halbleiterdetektoren werden als Vertexdetektoren eingesetzt.

**Einblicke in die Teilchenphysik** 

SS 2003 Uni Augsburg

**T03** 

**Richard Nisius** 

Page 14



## **Der innere Spurdetektor von ATLAS**



### **Die Silizium Detektoren**

**Der Pixel Detektor** 

- Radius 4.8 16 cm
- 3 Lagen, 8 Scheiben
- $-1.4\cdot 10^8$  Auslesekanäle

### **Der SemiConductor Tracker**

- Radius 27 52 cm
- 4 Lagen, 18 Scheiben
- $6.3 \cdot 10^6$  Auslesekanäle
- 4088 Module, 61 m<sup>2</sup> Silizium

Am MPI bauen wir 400 Module des SCT Vorwärtsbereichs.



# **Vom Modell zum Modul ist ein langer Weg**





### Die wichtigsten Dinge sind

- ein Roboter zum Ausrichten der Detektoren mit einer Genauigkeit von besser als 5  $\mu m$ ,
- ein Kleberoboter,
- und viel Ruhe und Geduld, Bauzeit: 1 Tag/Modul.







# **Die Modultypen**

**Einblicke in die Teilchenphysik** 



SS 2003 Uni Augsburg

**T03** 

Page 17





Fast alle Modul-Prototypen liegen innerhalb der Toleranzen.

**Einblicke in die Teilchenphysik** 

SS 2003 Uni Augsburg

**T03** 



## **Eigenschaften unbestrahlter Module**



Die unbestrahlten Module erfüllen die Designanforderungen.

**Einblicke in die Teilchenphysik** 

SS 2003 Uni Augsburg



# Messungen bestrahlter Module an einem Pion-Teststrahl



Mit geänderten Betriebsparametern werden die Anforderungen knapp erreicht.

**Einblicke in die Teilchenphysik** 

SS 2003 Uni Augsburg

**T03** 



## **Der Test eines Teilsystems**



### Die Integration der Module ist schwierig

- Die Module sind sehr empfindlich.
- Eine präzise Vermessung ist nötig (X-Ray).
- Elektronisches Rauschen ist zu vermeiden.
- Es ist nicht viel Platz, die Module überlappen.



Beim Zusammenspiel aller Kräfte ist sehr viel Abstimmung nötig.

**T03** 



## **Elektronen in Materie**



- Zusätzlich zu Ionisation und Bremsstrahlung gibt es noch Streuung an den  $e^-$  des Materials, Møller und Bhabha Streuung für  $e^-$  und  $e^+$ .
- Die Abschwächung:  $E = E_0 e^{\overline{X_0}}$  wird durch die Strahlungslänge  $X_0$  parametrisiert, empirisch:  $X_0 = \frac{716.4A}{Z(1+Z)\ln(287/\sqrt{Z})} \frac{g}{cm^2} \propto \frac{A}{Z^2} \begin{cases} Pb: \\ Z = 82, A = 207.2 \frac{g}{mol}, \rho = 11.3 \frac{g}{cm^3} \\ \Rightarrow X_0 \stackrel{\frown}{=} 0.56 \ cm$  für Blei



Die Wechselwirkungen der Elektronen resultieren in elektromagnetischen Schauern.



## **Photonen in Materie**



#### **Die Haupteffekte**

- Der Photoelektrische Effekt,  $\sigma_{\rm p.e.}$ .
- Die kohärente Streuung,  $\sigma_{\mathrm{Rayleigh}}$ .
- Die Compton Streuung,  $\gamma e^- 
  ightarrow \gamma e^-$ ,  $\sigma_{
  m Compton}$ .
- Die Paarproduktion,  $\gamma \rightarrow e^+e^-$ , im Feld der Nukleonen / Elektronen,  $\kappa_{nuc/e}$ .



Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg

**T03** 

**Richard Nisius** 

Page 23



## Elektromagnetische Kalorimeter - die Grundlagen



Die Schauerentwicklung

- Ansteigen der Teilchendichte solange Energie größer  $E_c$ , danach Abfallen durch Absorption.

Schauertiefe:  

$$t_{\max} = \frac{x_{\max}}{X_0} = \ln \frac{E}{E_c} \pm 0.5 \begin{cases} + & \text{für } \gamma \\ - & \text{für } e \end{cases}$$

- 98% der Energie ist in  $x < 2.5 x_{
m max}$ .

 Die Schauerbreite entsteht durch Vielfachstreuung.

- Molière Radius:  $R_{
  m M} = rac{21 \ {
  m MeV}}{E_{
  m c}} X_0 \left[rac{g}{cm^2}
  ight]$
- 95% der Energie wird in  $R < 2R_{
  m M}$  deponiert.

Beispiel: SiW Kalorimeter,  $E_0 = 100 \text{ GeV}$ 

| •   |                          | , 0                        |                  |                                                                    |
|-----|--------------------------|----------------------------|------------------|--------------------------------------------------------------------|
|     | $X_0 \left(g/cm^2 ight)$ | $X_{0}/ ho\left( cm ight)$ | $E_c~({ m MeV})$ | $-E_0/E_c=4\cdot 10^3$                                             |
| W   | 6.8                      | 0.35                       | 8.0              | $-x_{ m max} = 7.8 X_0 \Rightarrow L pprox 100 \ cm$               |
| Si  | 22                       | 9.4                        | 39               | $  - R_{ m M} pprox 5 \ cm \ \Rightarrow \ BxH pprox 10x10 \ cm^2$ |
| 1:1 | 14.4                     | 4.9                        | 23.5             | Fin sehr kompaktes Kalorimeter                                     |
|     |                          |                            |                  |                                                                    |



## **Elektromagnetische Kalorimeter - OPAL SiW**



Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg



## Hadronische Kalorimeter - das ATLAS HEC





- Die Abschwächung wird durch die Absortionslänge,  $\lambda$ , parametrisiert.
- Hadronische Schauer,  $\pi$ , haben einen hadronischen, h, und einen elektromagnetischen, e, Anteil, f, der aus  $\pi^0 \rightarrow 2\gamma$  kommt, also:  $\pi = h (1 - f) + e f$ .
- Im hadronischen Anteil bleibt etwa 20% der Energie unsichtbar (Kernanregungen etc.). Deswegen haben hadronische Schauer größere Fluktuationen.
- Ein Ausweg sind kompensierende Kalorimeter aus Uran bei denen ein Teil des Verlustes durch die Energiefreisetzung in Kernreaktionen kompensiert wird,  $e/\pi \rightarrow 1$ .

Das ATLAS Hadronic End Cap

- Das sensitive Material ist flüssiges Argon.
- Der Absorber sind 25~mm dicke Kupferplatten, insg.  $10\lambda.$

$$-rac{\sigma(E_e/E_\pi)}{E} = rac{22/70\%}{\sqrt{E/GeV}} \oplus 0.3/6\%,$$

Die Auflösung für hadronische Schauer ist viel schlechter.

Einblicke in die Teilchenphysik

SS 2003 Uni Augsburg



## **Bau einer MDT Kammer**



### Beim Bau gibt es einiges zu tun

- 432 Rohre a 3.8 m Länge montieren.
- Die Präzision: 20  $\mu m$  (Haardicke).
- 1728 (dichte!) Gasverbindungen.
- Eine Kammer wiegt ca. 350 kg.



### Sehr präzise Werkzeuge werden benötigt.

**T03** 



## **Massenproduktion der Kammern**



### Eine komplexe Logistik ist nötig

- Die Kammern werden mit kosmischen Myonen getestet.
- Sie werden mehrere Jahre gelagert.
- Der Transport muß sicher sein.

Die Produktion dauert ca. 6 Jahre.

### Es gibt jede Menge Kammern

- Für ATLAS werden 1200 MDT Kammern an 13 Instituten produziert.
- Das MPI baut davon 88 Stück.
- Das macht f
  ür uns 38016 Rohre und 152064 Gasverbindungen.





- In den Detektoren werden die stabilen Teilchen  $e^-$ , p,  $\gamma$  und eine Reihe langlebiger Teilchen z.B.  $\mu^{\pm}$ ,  $\pi^{\pm}$ ,  $\pi^0$ , n,  $K_S$ ,  $K_L$  nachgewiesen. Die wichtigsten Messgrößen sind,  $\vec{x}$ , t, E,  $\vec{p}$ ,  $\vec{v}$  und m.
- Der Ionisationsverlust geladener Teilchen wird durch die Bethe-Bloch Formel:

$$-rac{dE}{dx}=Kz^2rac{Z}{A}rac{1}{eta^2}\left[rac{1}{2}\lnrac{2m_{
m e}c^2eta^2\gamma^2T_{
m max}}{I^2}-eta^2-rac{\delta}{2}
ight]$$

beschrieben. Dies ist die wichtigste Formel für den Teilchennachweis.

- In den Spurkammern werden die Impulse geladener Teilchen vermessen.
- Beim Teilchendurchgang in dichter Materie entstehen viele sekundäre Teilchen haupsächlich durch Bremsstrahlung, Paarerzeugung und, für Hadronen, durch Kernreaktionen. Diese Kaskade führt zur Entwicklung eines Schauers.
- Kalorimeter dienen zur Energiemessung von Elektronen und Photonen (elektromagnetische Kalorimeter) und von Hadronen (hadronische Kalorimeter). Wegen der höheren Fluktuationen im Schauer ist die Energie-Auflösung für Hadronen wesentlich schlechter.