Two-Photon Physics at

Richard Nisius, CERN Aachen, 28 Januar 1997

- **1. Photon-Photon scattering**
 - Exclusive hadronic final states
 - Inclusive hadronic final states
- 2. Electron-Photon DIS
 - Lepton pairs and $F_{2, ext{QED}}^{\gamma}$
 - ullet The structure function $F_2^\gamma(x,Q^2)$

Analysis topics in Two-Photon events at LEP

e γ scattering	singly tagged events	$\gamma^{\star} \gamma o hadrons$			F_2^γ	hadron flow				F_2^γ	hadron flow	ented	
		lepton	pairs		ή	$F_{2,{ m QED}}^\gamma$	e,μ	$F_{2,{ m QED}}^\gamma$		eμτ	$F_{2,{ m QED}}^{\gamma}$	pres	
$\gamma\gamma$ scattering	untagged events	$\gamma\gamma ightarrow$ hadrons		hadron flow	hadron flow		$\sigma(W_{\gamma \gamma})$			$rac{\mathrm{d}\sigma}{\mathrm{d}\eta^{\mathrm{jet}}} rac{\mathrm{d}\sigma}{\mathrm{d}\mathrm{E}_{\mathrm{T}}^{\mathrm{jet}}}$		published	
		lepton	pairs				еμт						
		exclusive	hadronic f.s.	$\mathrm{D}^*(2010)^{\pm}$			$ m K^0_S m K^0_S$, $\eta'(958)$	$a_2(1320), f_2(1720)?$	$\eta_{ m c}(1{ m S}),\chi_{ m c2}(1{ m P})$			preliminary	
		<u> </u>		<	Ω		_			0			

Monte Carlo models

PYTHIA 5.721 and PHOJET 1.05

Monte Carlo ingredients:

- 1. Leading order (LO) QCD matrix elements
- 2. Hard and soft processes
- 3. Total cross sections from Regge models
- 4. Initial state parton radiation
- 5. Fragmentation based on by JETSET 7.408
- 6. Multiple interactions

NLO calculations

 NLO calculations for inclusive jet cross sections by T. Kleinwort and G. Kramer, DESY-96-035 (1996), hep-ph/9509321 and Phys. Lett. B370 (1996) 141, hep-ph/9602418.

The separation of event classes

at $\sqrt{s_{\mathrm{ee}}}$ = 131 GeV

The production of lepton pairs

$$\frac{\frac{d^2\sigma_{e\gamma \to e\mu^+\mu^-}}{dx dQ^2}}{\frac{2\pi\alpha^2}{x Q^4}} \begin{bmatrix} \left(1 + (1-y)^2\right) F_{2,\text{QED}}^{\gamma} - y^2 F_{\text{L,QED}}^{\gamma} \end{bmatrix}$$

$$egin{split} F_{2, ext{QED}}^{\gamma}(x,Q^2,P^2=0)/lphapprox &pprox \ &rac{x}{\pi}\left[1-2x(1-x)\lnrac{W^2}{m_{\mu}^2}-1+8x(1-x)
ight] \ &F_{ ext{L}, ext{QED}}^{\gamma}(x,Q^2,P^2=0)/lphapprox rac{4}{\pi}x^2(1-x) \end{split}$$

Event selection

 $\mathcal{L}_{int} = 156.4 \, \mathrm{pb}^{-1}$

- 1. Electron Tag: $E_{
 m tag} \geq ~0.775~E_{
 m b}$ and $0.06 \leq heta_{
 m tag} \leq 0.12$ rad
- 2. Antitag: $E_{
 m a} \leq 0.25~E_{
 m b}$
- 3. $N_{
 m ch} \geq 3$, and $(2.5 \leq W_{
 m vis} \leq 40) \,{
 m GeV}$ \Rightarrow 5455 events with $(6 \lessapprox Q^2 \lessapprox 30) \,{
 m GeV}^2$
- 1. Electron Tag: $0.75~E_{
 m b} \leq E_{
 m tag} \leq 1.15~E_{
 m b}$ and $0.2 \leq heta_{
 m tag} \leq 0.5$ rad, plus isolation criteria
- 2. Antitag: $E_{
 m a} \leq 0.15~E_{
 m b}$
- 3. $N_{
 m ch} \geq 3$, and $(2.5 \leq W_{
 m vis} \leq 25)\,{
 m GeV}$
- 4. $p_{
 m t,bal} < 5\,{
 m GeV}$, $p_{
 m t,out} < 4\,{
 m GeV}$, $-0.5\,E_{
 m b} \leq p_{
 m z,miss} \leq 0.5\,E_{
 m b}$

 \Rightarrow 225 events with $(60 \lessapprox Q^2 \lessapprox 400) \, {
m GeV^2}$

and Q^2 and it improves for higher $Q^2.$ The data, however, is precise enough to further constrain the models!

Some words about unfolding

The Principle:

$$m{g}^{
m det}(m{u}) = \int m{A}(m{u},m{\omega}) \,m{f}^{
m part}(m{\omega}) \,m{d}m{\omega} + m{B}(m{u})$$

1. Our case:

 $g^{
m det}(u) = g^{
m det}(x_{
m vis}), \ x_{
m vis} = f(E_{
m tag}, heta_{
m tag}, W_{
m vis})$ and $f^{
m part}(\omega) = f^{
m part}(x)$ which is related to $F_2^{\gamma}, B(u)$ is denotes the background events.

- 2. $A(u, \omega)$ has to be obtaind from the Monte Carlo Models \Rightarrow Model Dependence, consider all reasonable models.
- 3. The $g^{\rm det}$ ($x_{\rm vis}$) distribution from the Monte Carlo is changed during unfolding, by assigning weights to each Monte Carlo event, in order to match the $g^{\rm det}$ ($x_{\rm vis}$) distribution of the data.
 - The $g^{
 m det}$ ($x_{
 m vis}$) distributions of data and Monte Carlo agree afterwards by construction.
 - Other distributions have to be used in order to check whether the unfolding has also improved on them, without using explicitly this variable.
- 4. The unfolding result should be independent of the F_2^{γ} used in the Monte Carlo. This is not true if F_2^{γ} and the $\gamma^{\star} \gamma$ fragmentation do not factorize.

The systematic error on $F_2^\gamma(x,Q^2)$

$\langle Q^2 angle$	$\langle x angle$	x- range	$F_2^{\gamma}/lpha$	rel
(GeV^2)				(%)
PLUTO	0.145	0.060-0.230	$0.35 \pm 0.03 \pm 0.09$	25
9.2	0.385	$0.230 extrm{-}0.540$	$0.40 \pm 0.03 \pm 0.06$	15
	0.720	0.540 - 0.900	$0.49\ \pm 0.07\ \pm 0.07$	15
OPAL	0.072	0.006-0.137	$0.38 \ \pm \ 0.01 \ {}^{+ \ 0.06}_{- \ 0.13}$	25
14.7	0.230	0.137 - 0.324	$0.41\ \pm 0.02\ {}^{+\ 0.06}_{-\ 0.03}$	11
	0.423	0.324 - 0.522	$0.41 \pm 0.03 {}^{+ 0.08 }_{- 0.11 }$	23
	0.679	$0.522 ext{-} 0.836$	$0.54\ \pm\ 0.05\ {}^{+\ 0.31}_{-\ 0.13}$	41
TOPAZ	0.085	0.020-0.150	$0.60 \pm 0.08 \pm 0.06$	10
16	0.240	0.150-0.330	$0.56 \pm 0.09 \pm 0.04$	7
	0.555	0.330-0.780	$0.46 \pm 0.15 \pm 0.06$	13

The single contributions for OPAL $\langle Q^2
angle$ = 14.7 ${
m GeV}^2$

$\langle x angle$	0.072	0.230	0.423	0.679
F	+0.02	+0.01	+0.02	+0.02
L'tag	-0.01	-0.02	-0.02	-0.01
$ heta_{ ext{tag}}$	< 0.01	-0.02	+0.04	$< + 0.01 \\ - 0.10$
$W_{ m vis}^2$	< 0.01	-0.02	+0.05	-0.12
$p_{ m t}$	< 0.01	< 0.01	< 0.01	< 0.01
PDF	+0.06	+0.02	-0.11	-0.13
SUE	-0.05	-0.03	< 0.01	+0.02
model	+0.03 - 0.13	+0.06	+0.08 - 0.03	+0.31

Conclusions

Two-Photon physics is a very active field at LEP with good prospects for LEP2

- Photon-Photon scattering
 - 1. A number of resonances have been measured.
 - 2. The flow of hadronic energy has been compared to Monte Carlo models.
 - 3. NLO calculations of jet production agree nicely with the data.

Electron-Photon DIS

- 1. There is in good agreement with QED predictions and the measured $F_{2,\rm QED}^{\gamma}$ structure function and the ratio $F_{\rm B}^{\gamma}/F_2^{\gamma}$.
- 2. The F_2^{γ} structure function was measured for 7.5 $\langle Q^2 \rangle <$ 135 GeV². The systematic errors have a large contribution from the imperfect description of the hadronic final state by the QCD inspired Monte Carlo models.

and . . .

