

For more Information please consult: http://home.cern.ch/nisius, and R. Nisius, Phys.Rep. 332 (2000) 165, (hep-ex/9912049).

The 'history' of the Photon

Date	Event
8.11.1895	Röntgen discovers the X-rays
	(first Nobel Prize for physics 1901).
1900	Planck interprets light as 'energy quanta'
	$E=h u$, with $h=6.626\cdot 10^{-34}Js$.
1905	Einstein explains the photoelectric effect
	by 'photons'.
1922	Discovery of Compton scattering
	$\mathrm{e}\gamma ightarrow\mathrm{e}^{\prime}\gamma^{\prime}.$
1927	Heisenberg formulates the uncertainty
	principle e. g. $\Delta E \Delta t \geq \hbar$.
1930	Fist attempt to measure photon-photon
	scattering by Hughes et. al.
1936	First calculation of photon-photon
	scattering by Euler und Kockel.
1981	First measurement of the hadronic structure
	function of the photon by PLUTO.
2011	The Higgs Boson will be produced through
	photon-photon fusion at TESLA?

Properties of the photon

Property	
Mass (m)	$0 (m/m_{ m e} < 4 \cdot 10^{-22},$ [1])
Charge (Q)	$0 ~~(Q/Q_{ m e} < 5 \cdot 10^{-30},$ [2])
Velocity (c)	299792458 m/s
Spin parity (J^{PC})	1
Coupling ($lpha$)	1/137.03599976(50)
Task	Carrier of the electromagnetic
	interaction, no self-coupling

[1] Roderic Lakes, Phys. Rev. Lett. 80 (1998) 1826.[2] Georg Raffelt, Phys. Rev. D50 (1994) 7792.

Charge determination

- 1. Pulsars are very distant sources of photons.
- If photons carry charge they are subject to the Lorentz force and their trajectories in a magnetic field are bend.
- 3. This results in an energy dependent variation of the travel time of $\frac{\Delta t}{t} = \frac{Q^2 B^2 l^2}{6E^2}$.
- 4. Using the observed dispersion of the photon pulses from the pulsar PSR 1937+21 an upper limit for the charge of $Q/Q_{
 m e} < 5\cdot 10^{-30}$ is deduced.

[2] Georg Raffelt, Phys. Rev. D50 (1994) 7792.

Cross-section for

photon-photon scattering

For low energy photons with $E_\gamma = h
u \ll m_{
m e} c^2$ follows:

$$\frac{\sigma_{\gamma\gamma\to\gamma\gamma}}{d\Omega} = \frac{139}{32400\pi} \alpha^2 r_{\rm e}^2 \left(\frac{h\nu}{m_{\rm e}c^2}\right)^6 \left(3 + \cos^2\theta\right)^2$$
$$\frac{\sigma_{\gamma\gamma\to\gamma\gamma}}{\rm pb} = 0.73 \cdot 10^{-29} \cdot \left(\frac{h\nu}{\rm eV}\right)^6$$

For visible light, $\lambda = 400-700$ nm, one gets:

$$\sigma_{\gamma\gamma
ightarrow\gamma\gamma}=(2.2-64)\cdot10^{-28}$$
 pb

H. Euler and B. Kockel, Ann. der Phys. 26 (1936) 398.

Photon-photon scattering anno 1996

Fig. 2. Schematics of the experimental set-up. Two synchronized laser beams at $\lambda_0 = 1.053 \,\mu\text{m}$ and $\lambda_0/2$ are focussed to a common focal spot. A photon-photon collision can give a scattered photon detected at $\alpha_1 = 45^\circ$ with $\lambda_1 = 0.604 \,\mu\text{m}$ wavelength. We did not attempt to observe the other scattered photon at $\alpha_2 = 79^\circ$ with $\lambda_2 = 0.838 \,\mu\text{m}$

The sensitivity was much improved by using monochromatic, high-intensity laser and the possibility to detect single photons.

No signal has been observed.

$$\Rightarrow \sigma_{\gamma\gamma o \gamma\gamma} < 9.9 \cdot 10^{-4} ~ {
m pb}$$

F. Moulin et. al, Z.Phys. C72 (1996) 607.

The photon in our world

	Observation	photon energy
		meV
	Rotations of molecules	
		eV
	Spectrum of the sun	
	Hydrogen atomic spectra	
		keV
	X-ray radiation	
		MeV
	e^+e^- pair creation	
		GeV
\Rightarrow	Bremsstrahlung at LEP	¢
		TeV
	Cosmic rays	

The photon in the standard model

The building blocs of matter

Quarks
$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$
Leptons $\begin{pmatrix} \nu_{\rm e} \\ {\rm e} \end{pmatrix} \begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix} \begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}$

Interactions of matter via gauge bosons

Photon (γ), W $^{\pm}$ and Z 0 bosons and gluons

Gauge boson measurements at LEP

Object	Measurement
Z ⁰	Precision measurements at LEP100
w±	M $_{ m W}$ to $40~{ m MeV}$ by LEP200
Gluons	QCD coupling $lpha_s$ (M $_{Z^0}$) to about $~5\%$ at LEP100
Photon	Photon structure to 10 -30% at LEP100 -200

Measurements of the photon structure give insight into a fundamental gauge boson of the standard model.

Predictions for the photon structure

QED structure

- 1. The point-like component leads to a rise of the QED structure at large *x*.
- 2. The structure of virtual photons is suppressed.
- 3. Virtual photons have a longitudinal component.
- 4. Interference terms are important for virtual photons.

Hadronic structure

- 1. The global predictions of QED should work in the region where the point-like component dominates, apart from QCD corrections.
- 2. The evolution of the photon structure exhibits a positive slope for all values of x.
- 3. The QCD dynamics enforces a steep rise of the photon structure for small values of x, at fixed Q^2 .

The muon pair final state is a clear topology with good mass resolution.

The P^2 dependence is clearly observed in the data. The muon mass can be determined to about $\pm 15\%$.

The scattered electron is clearly visible. However, the hadronic final state may partly disappear along the beam axis.

There are significant differences between the data and the Monte Carlo predictions (OPAL '96)

X

A clear signal in the $\Delta(M)=M(D^{\star})-M(D^{0})$ mass spectrum is seen for anti-tagged and tagged events

point-like, purely perturbative QCD prediction, dominates at high-x

hadron-like, depends on f_q^γ , dominates at low-x

OPAL Collab., Eur. Phys. J. C18 (2000) 15.

\mathbf{P}^2 evolution after charm subtraction

Which of the predictions are verified ?

QED structure

- 1. The rise of the QED structure for large x ist clearly seen.
- 2. The P^2 suppression of the QED structure function is verified.
- 3. There is an indirect evidence for the existence of the interference terms.

Hadronic structure

- 1. The Q^2 evolution of the photon structure shows a clear rise for all values of x.
- 2. The acceptance is not sufficient to see the predicted rise at low values of x.

The OPAL far-forward calorimeter

The detector behaviour is sufficiently well understood.

$oldsymbol{W}$ distributions for anti-tagged events

The total hadronic cross-section $\sigma_{\gamma\gamma}$

A clear rise of the total cross-section is observed in the data.

 $\tilde{f}_{\gamma}(x_{\gamma},Q^2,P^2) \ \equiv \ \sum_{k=1}^{n_{\rm f}} \left[q_k^{\gamma}(x_{\gamma},Q^2,P^2) + \bar{q}_k^{\gamma}(x_{\gamma},Q^2,P^2) \right] + \frac{9}{4} g^{\gamma}(x_{\gamma},Q^2,P^2)$ $1 \ \mathrm{d}^2 N_{\gamma}^{\mathrm{T}} \ \tilde{f}_{\gamma}(x_{\gamma}, Q^2, P^2) \ \tilde{f}_{\mathrm{p}}(x_{\mathrm{p}}, Q^2) \\ |M_{\mathrm{SES}}(\cos \theta^{\star})|^2$ $ilde{f}_{\mathrm{P}}(x_{\mathrm{P}},Q^2) \;\equiv\; \sum_{k=1}^{\mathrm{n}_{\mathrm{f}}} \left[egin{array}{c} q_k^{\mathrm{p}}(x_{\mathrm{P}},Q^2) &+& ar{q}_k^{\mathrm{p}}(x_{\mathrm{P}},Q^2) \end{array}
ight] + egin{array}{c} rac{9}{4} g^{\mathrm{p}}(x_{\mathrm{P}},Q^2) \ rac{1}{4} g^{\mathrm{p}}(x_{\mathrm{P}},Q^2) \end{array}
ight]$ The concept of effective parton distribution functions $x_{
m p}$ $rac{lpha}{2\pi} \left[rac{1+(1-z)^2}{z} rac{1}{P^2} - rac{2\,m_{
m e}^2\,z}{P^4}
ight]$ x_{γ} $ilde{f}_{\gamma} ~=~ ilde{f}_{\gamma}^{\mathrm{T}} + rac{2(1-z)}{1+(1-z)^2} ilde{f}_{\gamma}^{\mathrm{L}}$ $\frac{1}{z \, \mathrm{d}z \mathrm{d}P^2}$ 8 $\mathrm{d}z\mathrm{d}x_\gamma\mathrm{d}x_\mathrm{p}\mathrm{d}\cos \theta^\star\mathrm{d}P^2$ ${
m d}^2 N_\gamma^{
m T}$ $dz dP^2$ $\mathrm{d}^5\sigma$ with:

A strong suppression with increasing photon virtuality is observed.

The Linear Collider (LC) will play an important role in testing this fundamental prediction of perturbative QCD.

Conclusion

 Many different measurements concerning the structure of the photon have been performed. The global properties of the photon are theoretically understood, however, there are many aspects which need improvements to arrive at a precise understanding of the structure of the photon.

Outlook

- With the large luminosity of the LEP program, and the improved understanding of the underlying physics, several measurements will get more precise.
- In the far future, the planned linear collider program will allow for an extension of the measurements of the photon structure to much larger momentum transfers.