

Die 'Geschichte' des Photons

Datum	Ereignis
8.11.1895	Röntgen entdeckt die X-Strahlen
	(erster Nobelpreis für Physik 1901).
1900	Planck interpretiert Licht durch
	'Energiequanten' $E=h u$, mit
	$h = 6.626 \cdot 10^{-34} Js.$
19 05	Einstein erklärt den Photoeffekt durch
	'Photonen'.
1922	Entdeckung der Comptonstreuung
	$\mathrm{e}\gamma ightarrow\mathrm{e}^{\prime}\gamma^{\prime}.$
1927	Heisenberg formuliert die Unschärfe-
	relation z. B. $\Delta E \Delta t \geq \hbar$.
1930	Erster Versuch der Messung von Photon-
	Photon Streuung von Hughes et. al.
1936	Erste Berechnung der Photon-Photon
	Streuung durch Euler und Kockel.
1981	Erste Messung der hadronischen Photon-
	strukturfunktion durch PLUTO.
2011	Das Higgs-Boson wird bei TESLA durch
	Photon-Photon Fusion erzeugt?

Eigenschaften des Photons

Eigenschaft	
Masse (m)	$0 (m/m_{ m e} < 4 \cdot 10^{-22},$ [1])
Ladung (Q)	$0 (Q/Q_{ m e} < 5 \cdot 10^{-30},$ [2])
Geschwindigkeit (c)	299792458 m/s
Spin Parität (J^{PC})	1
Kopplungsstärke ($lpha$)	1/137.03599976(50)
Natur	Welle und/oder Teilchen
Aufgabe	Eichboson der elektromagne-
	tischen Wechselwirkung,
	keine Selbstkopplung

[1] Roderic Lakes, Phys. Rev. Lett. 80 (1998) 1826.[2] Georg Raffelt, Phys. Rev. D50 (1994) 7792.

Bestimmung der Ladungsobergrenze

- 1. Pulsare sind weit von der Erde entfernte Quellen von Photonen.
- 2. Falls Photonen eine Ladung haben so wirkt auf sie die Lorentzkraft, und ihre Bahnen im Magnetfeld sind gekrümmt.
- 3. Daraus resultiert eine energieabhängige Laufzeitvariation von $\frac{\Delta t}{t} = \frac{Q^2 B^2 l^2}{6E^2}$.
- 4. Aus der beobachteten Dispersion der Photonpulse des Pulsars PSR 1937+21 lässt sich eine Ladungsobergrenze von $Q/Q_{
 m e} < 5\cdot 10^{-30}$ ableiten.

[2] Georg Raffelt, Phys. Rev. D50 (1994) 7792.

A.L. Hughes and G.E.M. Jauncey, Phys.Rev. 36 (1930) 773.

Wirkungsquerschnitt der

Photon-Photon Streuung

Für niederenergetische Photonen mit $E_\gamma = h
u \ll m_{
m e} c^2$ gilt:

$$egin{array}{rl} rac{\sigma_{\gamma\gamma
ightarrow\gamma\gamma}}{d\Omega}&=&rac{139}{32400\pi}lpha^2r_{
m e}^2\left(rac{h
u}{m_{
m e}c^2}
ight)^6\left(3+\cos^2 heta
ight)^2 \ rac{\sigma_{\gamma\gamma
ightarrow\gamma\gamma}}{
m pb}&=&0.73\cdot10^{-29}\cdot\left(rac{h
u}{
m eV}
ight)^6 \end{array}$$

Für sichbares Licht $\lambda = 400-700$ nm ergibt sich:

$$\sigma_{\gamma\gamma
ightarrow\gamma\gamma}=(2.2-64)\cdot10^{-28}$$
 pb

H. Euler and B. Kockel, Ann. der Phys. 26 (1936) 398.

Photon-Photon Streuung anno 1996

Fig. 2. Schematics of the experimental set-up. Two synchronized laser beams at $\lambda_0 = 1.053 \,\mu\text{m}$ and $\lambda_0/2$ are focussed to a common focal spot. A photon-photon collision can give a scattered photon detected at $\alpha_1 = 45^\circ$ with $\lambda_1 = 0.604 \,\mu\text{m}$ wavelength. We did not attempt to observe the other scattered photon at $\alpha_2 = 79^\circ$ with $\lambda_2 = 0.838 \,\mu\text{m}$

Durch Nutzung monochromatischer Laser hoher Leistung sowie der Nachweismöglichkeit einzelner Photonen wurde die Sensitivität extrem verbessert.

Es wurde kein einziges gestreutes Photon beobachtet.

$$\Rightarrow \sigma_{\gamma\gamma o \gamma\gamma} < 9.9 \cdot 10^{-4} ~ {
m pb}$$

F. Moulin et. al, Z.Phys. C72 (1996) 607.

Das Photon in unserer Welt

	Beobachtung	Photonenergie
		meV
	Molekülrotationen	
		eV
	Urlaubssonne	
	Atomspektren des Wasserstoffs	
		keV
	Röntgenstrahlung	
		MeV
	e ⁺ e ⁻ Paarerzeugung	
		GeV
\Rightarrow	Bremsstrahlung bei LEP	\Leftarrow
		TeV
	Bremsstrahlung bei TESLA	
	Kosmische Strahlung	

Das Photon im Standardmodell

Die Bausteine der Materie

Quarks
$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$
Leptonen $\begin{pmatrix} \nu_{e} \\ e \end{pmatrix} \begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix} \begin{pmatrix} \nu_{\tau} \\ \tau \end{pmatrix}$

 $\frac{\rm Wechselwirkungen \ der \ Materie \ durch \ Eichbosonen}{\rm Photon} \ (\gamma \), \ {\rm W}^{\pm} \ {\rm und} \ {\rm Z}^0 \ {\rm Bosonen} \ {\rm und} \ {\rm Gluonen}$

Messungen zu Eichbosonen bei LEP

Objekt	Messung
Z 0	Präzisionsmessungen bei LEP100
w±	$M_{f W}$ auf $40~{ m MeV}$ bei LEP200
Gluonen	QCD Kopplung $lpha_s$ (M $_{{ m Z}^0}$) auf ca. 5 $\%$ bei LEP100
Photon	Photonstruktur auf 10 $-$ 30 $\%$ bei LEP100 $-$ 200

Messungen zur Photonstruktur geben Aufschluß über ein fundamentales Eichboson des Standardmodells.

Warum sprechen wir von Photonstruktur?

In (a) nimmt das Photon als Ganzes an der Wechselwirkung teil \Rightarrow KEINE Struktur. Die Fluktuationen (b,c) können wegen der Unschärferelation existieren \Rightarrow Photon 'Struktur'. Die typische Lebensdauer der Fluktuationen steigt mit der Photonenergie an und fällt mit der Photonvirtualität ab.

$\mathrm{d}^4\sigma$ _	$\mathrm{d}^2 N_\gamma^{-1} = 2\pi \alpha^2$
$\mathrm{d}x\mathrm{d}Q^2\mathrm{d}z\mathrm{d}P^2$ –	$\overline{\mathrm{d}z\mathrm{d}P^2}\cdot\overline{xQ^4}$.
	$\left\{ \left[1+(1-y)^2 ight]F_2^\gamma-y^2F_{ m L}^\gamma ight\}$

mit:

$$\begin{aligned} \frac{\mathrm{d}^2 N_{\gamma}^{\mathrm{T}}}{\mathrm{d} z \mathrm{d} P^2} &= \frac{\alpha}{2\pi} \left[\frac{1 + (1 - z)^2}{z} \frac{1}{P^2} - \frac{2 \, m_{\mathrm{e}}^2 \, z}{P^4} \right] \\ Q^2 &= -q^2 = 2 \, E \, E_1' \, (1 - \cos \theta_1') \\ P^2 &= -p^2 = 2 \, E \, E_2' \, (1 - \cos \theta_2') \\ x &= \frac{Q^2}{Q^2 + W^2 + P^2} \end{aligned}$$

Vorhersagen zur Photonstruktur

QED Struktur

- 1. Die punktartige Komponente führt zum Anstieg der QED Struktur für große x.
- 2. Die Struktur virtueller Photonen ist unterdrückt.
- 3. Virtuelle Photonen haben eine longitudinale Komponente.
- 4. Interferenzterme sind wichtig für virtuelle Photonen.

Hadronische Struktur

- 1. Im Bereich in dem die punktartige Komponente dominiert, gelten die globalen Aussagen der QED modulo QCD Korrekturen.
- 2. Die Q^2 Entwicklung der Photonstruktur zeigt einen positiven Anstieg für alle Werte von x.
- 3. Die QCD Dynamik erzwingt bei festem Q^2 einen steilen Anstieg der Struktur für kleine Werte von x.

Der Muonpaarendzustand ist eine klare Topologie mit guter Massenauflösung.

Die P^2 Abhängigkeit ist in den Daten deutlich sichtbar. Die Muonmasse kann mit $\pm 15\%$ Genauigkeit bestimmt werden.

Das gestreute Elektron ist klar sichtbar. Der hadronische Endzustand kann jedoch teilweise entlang der Strahlachse verschwinden.

OPAL Collab., Eur. Phys. J. C18 (2000) 15.

Q^2 Entwicklung für $m n_f=3$

Eine gute P^2 -Auflösung \Leftrightarrow Orts-Auflösung ist nötig.

Das OPAL Far Forward Kalorimeter

Messungen von $F_{ m eff}^\gamma \propto \sum \sigma_{ m AB} + rac{1}{2} au_{ m TT} \cos 2ar{\phi} - 4 au_{ m TL} \cosar{\phi}$

Welche Vorhersagen sind verifiziert ?

QED Struktur

- 1. Der Anstieg der QED Struktur für große x ist klar ersichtlich.
- 2. Die P^2 Unterdrückung der QED Strukturfunktion ist verifiziert.
- 3. Es gibt eine indirekte Evidenz der Existenz der Interferenzterme.

Hadronische Struktur

- 1. Die Q^2 Entwicklung der Photonstruktur zeigt einen deutlich positiven Anstieg für alle Werte von x.
- 2. Die Akzeptanz reicht nicht aus, um den Anstieg der Struktur für kleine Werte von x zu sehen.

Die Suche nach Glueballs

- 1. Glueballs sind eine aussergewöhnliche Materieform gebundener farbneutraler Resonanzzustände aus Gluonen. Die Leichtesten durch Rechnungen auf dem Gitter vorhergesagten Glueballs liegen im Massenbereich von ca. 1500–2500 MeV.
- 2. Glueballs sollten vornehmlich in gluonreichen Umgebungen wie z.B. der $p\overline{p}$ Vernichtung oder in J/Ψ Zerfällen produziert werden.
- 3. Photonen koppeln nicht direkt an Gluonen. Deswegen sollten Glueballkandidaten eine kleine Zerfallsbreite $\Gamma_{\gamma\gamma}(\mathbf{R})$ in der Reaktion $\gamma^*\gamma^* \to R$ haben.

Wirkungsquerschnitt:

 $\sigma(\gamma^{\star}\gamma^{\star}
ightarrow R) ~=~ 8\pi(2J_{
m R}+1)rac{\Gamma_{\gamma\gamma}({
m R})\Gamma({
m R})}{(W_{\gamma\gamma}^2-m_{
m R}^2)^2+m_{
m R}^2\Gamma^2({
m R})}$

Die Winkelverteilung der Zerfallsprodukte gibt Aufschluss über den Spin (J) der Resonanz.

L3 Collab., Phys.Lett. B501 (2001) 173.

Das Konzept der effektiven Partonverteilung

$$rac{\mathrm{d}^5\sigma}{\mathrm{d}z\mathrm{d}x_\gamma\mathrm{d}x_\mathrm{p}\mathrm{d}\cos heta^\star\mathrm{d}P^2} \propto rac{1}{z}rac{\mathrm{d}^2N_\gamma^\mathrm{T}}{\mathrm{d}z\mathrm{d}P^2}rac{ ilde{f}_\gamma(x_\gamma,Q^2,P^2)}{x_\gamma}rac{ ilde{f}_\mathrm{p}(x_\mathrm{p},Q^2)}{x_\mathrm{p}}|M_\mathrm{SES}(\cos heta^\star)|^2$$

mit:

$$\begin{split} \tilde{f}_{\rm p}(x_{\rm p},Q^2) &\equiv \sum_{k=1}^{{\rm n}_{\rm f}} \left[\begin{array}{c} q_k^{\rm p}(x_{\rm p},Q^2) &+ & \bar{q}_k^{\rm p}(x_{\rm p},Q^2) \end{array} \right] + \begin{array}{c} \frac{9}{4} g^{\rm p}(x_{\rm p},Q^2) \\ \tilde{f}_{\gamma}(x_{\gamma},Q^2,P^2) &\equiv \sum_{k=1}^{{\rm n}_{\rm f}} \left[q_k^{\gamma}(x_{\gamma},Q^2,P^2) + \bar{q}_k^{\gamma}(x_{\gamma},Q^2,P^2) \right] + \frac{9}{4} g^{\gamma}(x_{\gamma},Q^2,P^2) \\ \tilde{f}_{\gamma} &= & \tilde{f}_{\gamma}^{\rm T} + \frac{2(1-z)}{1+(1-z)^2} \tilde{f}_{\gamma}^{\rm L} \\ \frac{{\rm d}^2 N_{\gamma}^{\rm T}}{{\rm d} z {\rm d} P^2} &= & \frac{\alpha}{2\pi} \left[\frac{1+(1-z)^2}{z} \frac{1}{P^2} - \frac{2 \, m_{\rm e}^2 \, z}{P^4} \right] \end{split}$$

Struktur quasireeller Photonen

Der hadronartige Anteil ist zu klein für alle x, und der Quarkanteil ist nicht ausreichend \Rightarrow Gluonen werden gebraucht.

Der Gluonanteil steigt zu kleinen x stark an.

Der Linearbeschleuniger (LC) wird eine wichtige Rolle beim Test dieser fundamentalen Vorhersage der perturbativen QCD spielen.

Zusammenfassung

 Eine Vielzahl von Messungen zur Photonstruktur wurde durchgeführt. Die globalen Eigenschaften sind theoretisch verstanden, es gibt jedoch noch viel zu verbessern, um zu einer sehr präzisen Vermessung der Photonstruktur zu gelangen.

Ausblick

- Mit der hohen Gesamtluminosität des LEP Programms und dem besseren Verständnis der zugrundeliegenden Physik werden eine Reihe von Messungen in Zukunft noch genauer werden.
- In fernerer Zukunft erlaubt das geplante Linearbeschleunigerprogramm eine Erweiterung der Vermessung der Photonstruktur auf wesentlich höhere Impulsüberträge.