Strahlenharte Pixelmodule für Detektoren am SLHC

DPG Frühjahrstagung Freiburg - 6. März, 2008

Richard Nisius (MPP München) nisius@mppmu.mpg.de

präsentiert von Michael Beimforde

Die Änderungen der Konditionen von LHC zu SLHC

LHC Konditionen

- Start 2008
- Luminosität: $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- Integrierte Luminosität (10y):

$$\mathcal{L}_{ ext{int}} = \int dt L = 500 ext{ fb}^-$$

- Teilchenfluss: $\Phi_{eq}(4 \text{ cm}) = 3 \cdot 10^{15} \text{ cm}^{-2}$
- Trefferdichte: 0.5–1 k Spuren pro Ereignis

SLHC Konditionen

- Start 2016?
- Luminosität: $L = 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
- Integrierte Luminosität (5y):

$$\mathcal{L}_{int} = \int dt L = 2500 \text{ fb}$$

- Teilchenfluss: $\Phi_{eq}(4cm) = 1.6 \cdot 10^{16} cm^{-2}$

MPP Produktion dünner Sensoren sensor wafer handle wafer 1. implant backside 2 hond sensor wafer 3 thin sensor side process structure resist. to handle wafer to desired thickness on top side etch backside up on sensor wafer to oxide/implant HLL Industry: TraciT, Grenoble HLL main lab HLL special lab

Einige Details

- Die Produktion wurde erfolgreich mit Dioden durchgeführt.
- Die Durchbiegung durch Gravitation ist kleiner als 20 $\mu m.$
- Die aktive Dicke wird auf die gew
 ünschte Signalgr
 ö
 ße abgestimmt.
- Der Prozess führt zur Sauerstoffanreicherung der Sensoren.
- Zur Zeit produzieren wir Pixeldetektoren mit dieser Technik.
- Der HLL Prozess der Rückseitenätzung muss in die Industrie transferiert werden.

Der Prozess ist eingeführt, muss aber noch optimiert werden.

Verarmungsspannung Leckströme, Rauschen und Leistungsaufnahme

Verarmungsspannung

- Nutzen des positiven Ausheilungseffektes ergibt: $V_{dep}(100 \,\mu\text{m}) \approx 300 \,V$ bei $\Phi_{eq} = 5 \cdot 10^{15} / \text{cm}^2$. - $V_{dep} \propto d^2$, mit $d = 75, 100, 125, 250 \,\mu\text{m}$ $V_{dep}(d) = 170, 300, 470, 1875 \,V$

Leckströme, Rauschen und Leistungsaufnahme

$$- \frac{h_{\text{eak}}}{V} = \alpha \cdot \Phi_{\text{eq}}, \alpha(T = 20^{\circ} C) \approx 4 \cdot 10^{-17} \text{ A/cm.}$$

$$- \frac{h_{\text{leak}}}{V} \propto d, \text{ Noise } \propto \sqrt{\frac{h_{\text{leak}}}{\tau_f}}, \frac{W_{\text{pix}}}{V_{\text{pix}}} = \frac{V_{\text{dep}}}{L_{\text{leak}}} \propto d^3.$$

$$- \text{Bei } x \cdot y \cdot d = (50 \cdot 250 \cdot d) \ \mu\text{m}^2, T = -7^{\circ} C$$

$$\tau_f = 200 \text{ ns und } \Phi_{\text{eq}} = 5 \cdot 10^{15} / \text{cm}^2.$$

$$- \text{Mit: } d = 75, 100, 125, 250 \ \mu\text{m}$$

$$\frac{h_{\text{eak}}}{L_{\text{eak}}}(d) = 14, 18, 23, 45 \text{ nA.}$$

$$- \text{Noise}(d) = 92, 106, 119, 168 \text{ ENC. Das Rauschen}$$

$$- \text{ist zur Zeit } 150/200 \text{ ENC vor/nach Bestrahlung.}$$

$$W_{\text{niv}}(d) = 2, 5, 11, 85 \ \mu\text{W.}$$

Bessere Operationsbedingungen für dünne Sensoren.

Dünne Sensoren - Signalhöhe und Strahlungslänge

Ladungssammlungseffizienz (LSE=CCE)

- Die gemessene LSE ist 73%, für 50 μ m dicke MPP p-in-n Dioden bei $\Phi_{eq} = 5 \cdot 10^{15} / \text{cm}^2$.

Die erwartete Signalhöhe

- Die Herausforderung besteht in der Kleinheit des Signals von z.B. $\mathcal{O}(4000) e^-$ bei $V_{\text{bias}} = 400 \text{ V},$ $d = 125 \ \mu\text{m}$ und $\Phi_{\text{eg}} = 5 \cdot 10^{15} / \text{cm}^2.$
- Messungen müssen klären ob dies

tatsächlich so ist.

Si-Strahlungslänge

- Die jetzige Si-Strahlungslänge ist etwa 0.46% X₀ für: 250 μ m (Sensor) + 180 μ m (chip).
- Die mögliche Si-Strahlungslänge ist etwa 0.21% X₀ für: 150 μ m (Sensor) + 50 μ m (Chip).

Auf kleinere Signale optimierte Elektronik ist nötig.

Die nahe Zukunft

Interon Chip: Ladungsteilung, LSE, ... <u>ATLAS Modul:</u> Bump Bonding

- In ATLAS, wird diese R&D von den Univs BN, DO and Oslo, IZM, Interon, und dem MPP München vorangetrieben.
- Zusätzlich gibt es innerhalb von RD50
 Zuisammenarbeit mit CERN, HH und
 Ljubljana bei dünnen planaren Sensoren.
- Für diese R&D werden neu produzierte ATLAS FE-I3 Chips benötigt.
- Eine Kleinserie von n-in-n and n-in-p
 Wafern von 75 μm und 150 μm Dicke sind in Produktion.
- Es wurden Teststrukturen entwickelt die mit dem ATLAS FE-I3 chips, und einem Spezialchip von Interon verbunden werden.

Die Wafer haben die ersten Schritte durchlaufen und warten zur Zeit auf die Oxidation.

Der IZM Ansatz zur 3D-Integration

IZM

Solid Liquid Inter Diffusion (SLID)

(eine Alternative zum Bump Bonding)

- TiW Lage als Diffusionssperre
- $\mbox{ Cu + Sn Lagen} \rightarrow \mbox{ Cu}_3 \mbox{Sn Legierung}$
- Padabstände sind iW durch die pick & place Genauigkeit limitiert.

Inter Chip Vias (ICV) + SLID (das 3D-Integrationskonzept)

- TiW layer als Diffusionssperre
- W plug mit Durchmesser von 2 μm und einem Aspektverhältnis von 8:1.
- Die Größe der Pixel kann bis zu 20 \times 20 μm klein sein.
- Das Stapeln von mehreren Chiplagen ist möglich.

Diese IZM Technologie wird für eine mögliche Nutzung beim SLHC Ausbau untersucht.

- Zwei Wafer mit kleinen Dioden wurden am HLL vorbereitet und am IZM mit TiW, Cu and Sn, behandelt, wie f
 ür den SLID Prozess vorgesehen.
- Die Leckströme vor und nach der Behandlung sind klein und stabil.
 Das bedeutet, dass kein Cu in den Sensor eindiffundiert ist.

Diese ersten Resultate sind sehr ermutigend.

Zusammenfassung und Ausblick

Dünne Sensoren

- Falls planare Sensoren bei SLHC zum Einsatz kommen sollten die Möglichkeiten des Abdünnens evaluiert werden.
- Dünne Sensoren haben im Vergleich zu Dicken einige Vorteile im Betrieb, z.B. niedrigere Verarmungsspannung, Leckströme und Schrotrauschen.
- Die vorhergesagte Signalhöhe d
 ünner Sensoren nach hoher Bestrahlung muss noch experimentell
 überpr
 üft werden.
- Die Produktion einer Kleinserie in n-in-n und n-in-p Technologie, basierend auf dem MPP Prozess mit Dicken von 75 μ m and 150 μ m ist im Gange.
- In jedem Falle, brauchen planare Sensoren Elektronik die f
 ür kleinere Signalh
 öhen
 optimiert ist.

Verbindungstechnologie und 3D-Integration

 Die Entwicklung der SLID Verbindungstechnologie und der 3D-Integrationstechnologie wird mit dünnen planaren Sensoren vorangetrieben.

