Tests des Standardmodells Gestern und Morgen - Zwei Beispiele

Freiburg, 13. Januar 2004

Richard Nisius (MPI München) nisius@mppmu.mpg.de

Das Standardmodell hat Präzisionstests erfolgreich bestanden.

Tests des Standardmodells

Freibura

Higas-Boson

Warum wir von Photonstruktur sprechen

Die Struktur des Photon ist ein rein guantenmechanischer Effekt.

- Wegen der Heisenbergschen Unschärferelation kann das Photon für einen kurzen Zeitraum in einen leptonischen oder hadronischen Zustand (vereinbar mit seinen Quantenzahlen) fluktuieren.
- Die typische Lebensdauer $\Delta t = 1/\Delta E$ dieser Fluktuationen steigt mit der Photonenergie und fällt mit der Photonvirtualität.

Messungen zur Photonstruktur bevorzugen guasi-reele, hochenergetische Photonen.

Higgs-Bosor

Zusammenfassung

Tests des Standardmodells

Freiburg 13. Ja

13. Januar 2004 R

Richard Nisius

'문 🕨 🗶 🗶 '문 🕨 '문

4

Higgs-Boson

Tief-inelastische Elektron Photon Streuung

- Der differentielle WQS:

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}x\,\mathrm{d}Q^2}\approx k(x,y,Q^2)\cdot F_2^{\gamma}(x,Q^2,P^2)$$

Die Strukturfunktion F_2^{γ} parametrisiert die Struktur des Photons.

Higgs-Boson

Die Struktur virtueller Photonen ist unterdrückt

- Die Messung der Reaktion e $\gamma \rightarrow e \mu^+ \mu^-$ liefert:

- Für $P^2 = 0$ ist das Photon reel und $F_{2,QED}^{\gamma}$ ist maximal.

- Die Vorhersage des Standardmodells ist $P^2 = 0.05 \text{ GeV}^2$.
- Für $P^2 > 0$ ist das Photon virtuell und $F^{\gamma}_{2,\rm QED}$ ist reduziert.

Die Vorhersage wird von den Daten quantitativ bestätigt.

Higgs-Boson

Die hadronische Struktur des Photons

Hiaas-Boson

Die Zerfallsraten des Higgs-Bosons

Freibura

— Obere Grenze aus Präzisionsmessungen:

M_H < 219 GeV mit 95% CL.

- Im interessanten Bereich stehen eine Reihe von Zerfallskanälen zur Verfügung.
- Zu jeder Masse gehört eine genau vorhergesagte Zusammensetzung der Kanäle.
- Untere Grenze aus direkter Suche bei LEP:

M_H > 114.4 GeV mit 95% CL.

Die Kombination von Masse und Zerfallsraten ist ein guter Test der Theorie.

Tests des Standardmodells

8

Higgs-Boson

Zusammenfassung

Der Large Hadron Collider (2007 - 20xx): E = 14000 GeV

Entdeckungspotential: $M_H = 100 - 1000 \text{ GeV}$

Tests des Standardmodells

10.00

Freiburg 13. J

13. Januar 2004 R

And Star

Richard Nisius

9

LHCb

Higgs-Boson

Der ATLAS Detektor

10

Higgs-Boson

Zusammenfassung

Gestern vs Morgen oder von OPAL(LEP) zu ATLAS (LHC)

Beschleuniger Datennahme Strahlkreuzung (Hz): $50k \Rightarrow 40M$ Ereignis/Strahlkreuzung: $10^{-4} \Rightarrow 23$ Ereignisgröße (MB): $0.15 \Rightarrow 1$ Detektor Datenmenge (TB): $0.5/\text{LEP} \Rightarrow 1000/\text{Jahr}$ Spuren/Ereignis: $5 \Rightarrow 1000$ Radius, Länge (m): 5.5, 12 \Rightarrow 11, 44 Gewicht (t): $2800 \Rightarrow 7000$ Software Silizium Streifendetektor Zeilen, Routinen/Klassen, Pakete: Radius, Länge (cm): 7.5, $35 \Rightarrow 52, 560$ $0.5M.7k.54 \Rightarrow 1M.1k.100$ Fläche (m²): $0.003 \Rightarrow 61$ Wafer, Kanäle: 150, 30k ⇒ 15k .6M

Die Herausforderungen sind teilweise um Größenordnungen gewachsen.

Higgs-Boson

Der ATLAS SemiConductor Tracker

Das Layout

- Barrel: 4 Lagen.
- Endkappen: 2x9 Scheiben.
- Module: 4088, Barrel 2112,
 - Endkappen 1976 (drei Sorten).
- Ortsauflösung: 16 μ m (senkrecht) und 580 μ m (parallel) zu den Streifen.

Ein Endkappenmodul

- 768 einseitige p-in-n Streifen mit 50-90 μm Streifenabstand.
- Doppelseitiger Hybrid mit 6 Chips pro Seite, binäre Auslese.
- Befestigungspunkte mit 20 μ m Genauigkeit.

Higgs-Boson

Resultate von Endkappenmodulen

Die Module werden mit hoher Ausbeute innerhalb der mechanischen Spezifikationen gebaut.

Elektrische Eigenschaften

Die Module halten der hohen Strahlenbelastung bei LHC ausreichend lange stand.

Zusammenfassung und Ausblick

- Das Standardmodell ist experimentell mit großer Präzision getestet und bestätigt worden.
- Einer seiner Eckpfeiler, das Higgs-Boson, wurde jedoch bis heute nicht entdeckt.

Photonstruktur

- Wie von der Heisenbergschen Unschärferelation vorhergesagt, ist die Struktur virtueller Photonen unterdrückt.
- Die punktartige Komponente der hadronischen Struktur des Photons f
 ührt (anders als beim Proton) zu einer mit Q² ansteigenden Struktur f
 ür alle Werte von x.

Das Higgs-Boson

- Es gibt nur indirekte et al. Hinweise auf die Existenz des Higgs-Bosons.
 - Der LHC Beschleuniger wird nach mehr als 40 Jahren die Frage der Gültigkeit dieser Theorie wahrscheinlich abschliessend klären.
- Siliziumdetektoren sind wichtige Tools zur Messung der Higgs-Boson Zerfälle.

Vor uns liegen spannende Zeiten, schaun wir mal...

Die Entfaltung von F_2^{γ} aus den Daten

Die Aufgabe

- Finde die zugrunde liegende Funktion f(x) aus der beobachteten Verteilung: $g^{det}(x_{vis}) = \int A(x_{vis}, x) f(x) dx + U(x_{vis})$

Die Lösung

- Monte Carlo (MC) Simulation vieler
 Ereignisse und Entfaltung der Verteilung.
- Simulation vieler MC Signalereignisse $\Rightarrow A(x_{vis}, x)$.
- Simulation vieler MC Untergrundereignisse \Rightarrow $U(x_{vis})$.
- Integral \rightarrow Matrixgleichung, löse numerisch (mit Regularisierung), i.e. Anpassung von $\tilde{g}^{det}(x_{vis},MC)$ an die Datenverteilung $g^{det}(x_{vis},Da)$ durch Variation von $\tilde{f}(x) = f(x) \cdot c(x)$.

Das Ergebnis

– Die Verteilungen \tilde{g}^{det} (x_{vis} ,MC) und g^{det} (x_{vis} ,Da) sind im Rahmen ihrer Fehler identisch.

Die Strukturfunktion ist:

$$F_2^{\gamma}(x, \mathsf{Da}) = c(x) \cdot F_2^{\gamma}(x, \mathsf{MC})$$

