Photon – Photon Physics

to

Richard Nisius (CERN) Gießen, 12 October 1

The programme

- Introduction
- Photon-photon scattering
- 1. Total cross-section
- Deep-inelastic electron-photon scattering
- 1. The QED structure
- 2. The hadronic structure
- Interactions of two virtual photons
- 1. **BFKL signatures**
- New signatures
- 1. Higgs production
- Conclusions

The 'history' of the photon

Date	Event
8.11.1895	Röntgen discovers the X-rays
	(first Nobel Prize for physics 1901).
1900	Planck interprets light as 'energy quanta'
	$E=h u$, with $h=6.626\cdot 10^{-34}Js$.
1905	Einstein explains the photoelectric effect
	by 'photons'.
1922	Discovery of Compton scattering
	$\mathrm{e}\gamma ightarrow\mathrm{e}^{\prime}\gamma^{\prime}.$
1927	Heisenberg formulates the uncertainty
	principle e. g. $\Delta E \Delta t \geq \hbar$.
1930	Fist attempt to measure photon-photon
	scattering by Hughes et. al.
1936	First calculation of photon-photon
	scattering by Euler und Kockel.
1981	First measurement of the hadronic structure
	function of the photon by PLUTO.
2011	The Higgs Boson will be produced through
	photon-photon fusion at TESLA?

Charged particle pair production

The photon collider has larger cross sections than the e^+e^- collider for several final states.

The creation of the photon beam

Some features of a Photon Collider

$oldsymbol{W}$ distributions for anti-tagged events

Predictions for the cross-section $\sigma_{\gamma\gamma}$

To achieve a 5-10% precision on W a Photon Collider is needed to avoid the reconstruction of W from the hadronic final state.

The muon pair final state is a clear topology with good mass resolution.

The scattered electron is clearly visible. However, the hadronic final state may partly disappear along the beam axis.

Charm production tagged by D*s

point-like, purely perturbative QCD prediction, dominates at high-x

hadron-like, depends on f_g^γ , dominates at low-x

Measurements at low Q^2 and x

GRV(LO) and SaS1D are slightly too low compared to the data.

OPAL Collab., Eur. Phys. J. C18 (2000) 15.

Q^2 evolution compared to linear fits

The future of the F_2^γ measurement

The Linear Collider will play an important role in testing this fundamental prediction of perturbative QCD.

Effective charge and cross-section

Predictions of the u to d ratio

At present the predictions for the u to d ratio vary within a factor of 2 to 3.

Experimental information is highly desirable.

symmetry: $rac{-\sigma}{\sigma}\proptorac{\beta_1}{F_1^\gamma}$ with: $g_1^\gamma\propto\Delta q^\gamma+lpha_s\Delta g^\gamma$

The structure function g_1^γ is mainly sensitive to quarks. Use F_1^γ from unpolarized DIS to determine the polarized distribution function Δq^γ .

$\sigma_{\gamma^\star\gamma^\star}$ as a signal of BFKL

$$egin{aligned} y_1 &= rac{q_1k_2}{k_1k_2}\,, \quad Q_1^2 &= -q_1^2 \ s &= (k_1+k_2)^2, s_0 &= rac{\sqrt{Q_1^2Q_2^2}}{y_1y_2} \ \hat{s} &= W^2 pprox s\,y_1y_2 \end{aligned}$$

- 1) Take $Q_i^2 \gg \Lambda_{
 m QCD}^2$ and $Q_1^2 \approx Q_2^2$ to allow for a perturbative prediction without DGLAP evolution.
- 2) Look at a region where the phase space for gluon emission is large $\Rightarrow W^2 \gg Q_1^2, Q_2^2$.
- 3) Define:

$$Y = \ln\left(rac{sy_1y_2}{\sqrt{Q_1^2Q_2^2}}
ight) \simeq \ln\left(rac{W^2}{\sqrt{Q_1^2Q_2^2}}
ight) = \overline{Y}\,,$$

and measure the cross-section as a function of $Yor\overline{Y}$.

The importance of QED radiative corrections

Radiative corrections are only important for the electron method, and they

are large at large $ar{Y}$ which means at low electron energies.

BFKL expectation for large W

- 1) LEP probes the region for W up to about 100 ${
 m GeV}$ and $\langle Q^2
 angle pprox 15 ~{
 m GeV^2}.$
- 2) The Linear Collider will extend the region to larger W^2 for moderate Q^2 , giving access to large Y.

- 1. The Higgs is produced as an s-channel resonance. A measurement of $\Gamma(\gamma\gamma \rightarrow h_0)$ is very fundamental as it is sensitive to all charged particles in the loop which couple to the Higgs.
- 2. The required accuracy for $\Gamma(\gamma\gamma \to h_0)$ is at the few percent level to be sensitive to new particles in the decoupling limit.
- 3. Combined measurements of $\Gamma(\gamma\gamma \to h_0)$ and $BR(h_0 \to \gamma\gamma)$ at the e⁺e⁻ and $\gamma\gamma$ collider provide a model independent measurement of the total width of the Higgs.

Higgs production $\gamma\gamma ightarrow h_0$

Good prospects for $\gamma\gamma$ production of Higgs bosons, because of the larger cross-section and the reach to higher masses than for e⁺e⁻.

The test case $\gamma\gamma ightarrow h_0 ightarrow { m bb}$

- 1. To reduce the continuum production of ${
 m b}ar{
 m b}$ and ${
 m c}ar{
 m c}$ one needs to select $J_z=0$, because then $\sigma(\gamma\gamma o {
 m q}ar{
 m q})\propto m_{
 m q}/W_{\gamma\gamma}.$
- 2. In addition, good b tagging and c suppression is mandatory.
- 3. Assume 100% laser and 85% electron polarization and run the collider at $\sqrt{s_{\rm ee}} = M_{h_0}/0.8$ such that the Higgs mass corresponds to the peak of the $\gamma\gamma$ luminosity spectrum.
- 4. Use additional cuts to further suppress the background.

For $L_{\gamma\gamma} = 43 \text{ fb}^{-1}$ in the peak, which means about $400 \text{ fb}^{-1} \text{ e}^+ \text{e}^-$ luminosity, $\Gamma(\gamma\gamma \to h_0)$ can be determined with a precision of about 2-10% in the mass range $120 < M_{h_0} < 160 \text{ GeV}$.

Higgs reconstruction for $\gamma\gamma
ightarrow h_0
ightarrow {
m bb}$

Conclusion

- 1. The Linear Collider is an ideal tool to investigate photon–photon physics at the highest energies.
- 2. The tagging of electrons down to the lowest possible angles is a challenging task, but it is mandatory to achieve overlap with the results from LEP II in several areas, i.e. structure function measurements.
- Due to the high centre-of-mass energy, especially in the Photon Collider mode, new channels (Higgs, W, Z⁰, LQ, ...) are open to be copiously produced.
- 4. For some of the reactions the Photon Collider extends the reach of a e^+e^- Collider significantly, and in some cases it is unique.

Much work is ahead of us to bring a Linear Collider to life, but it should be fun and the physics potential is certainly worth the effort.

Slides: http://home.cern.ch/nisius