

Richard Nisius, CERN Karlsruhe, 15.05.2000

- Einleitung
- 1. QED Struktur
- 2. Hadronische Struktur
- 3. Zukünftige Messungen zur Photonstruktur
- Zusammenfassung und Ausblick

Das Photon in unserer Welt

	Beobachtung	Photonenergie
		meV
	Molekülrotationen	
		eV
	Urlaubssonne	
	Wasserstoff Atomspektrum	
		keV
	Röntgenstrahlung	
		MeV
	e ⁺ e ⁻ Paarerzeugung	
	· · · · · · · · · · · · · · · · · · ·	GeV
<u> </u>	Bremsstrahlung bei LEP	<u>ب</u>
	Dremsstrannung ber EEI	ToV
	Kosmische Strahlung	ICV

Das Photon im Standardmodell

Die Bausteine der Materie

Quarks	$\left(egin{array}{c} u \ d \end{array} ight) \left(egin{array}{c} c \ s \end{array} ight) \left(egin{array}{c} t \ b \end{array} ight)$
Leptonen	$\left(egin{array}{c} oldsymbol{ u}_{\mathbf{e}} \\ \mathbf{e} \end{array} ight) \left(egin{array}{c} oldsymbol{ u}_{\mu} \\ oldsymbol{\mu} \end{array} ight) \left(egin{array}{c} oldsymbol{ u}_{ au} \\ oldsymbol{ au} \end{array} ight)$

Wechselwirkungen der Materie durch Eichbosonen

Photon(γ), W $^{\pm}$ und Z 0 Bosonen, und Gluonen

Messungen zu Eichbosonen bei LEP

i.

Objekt	Messung
Z ⁰	Präzisionsmessungen bei LEP100
\mathbf{w}^{\pm}	$M_{ m W}$ auf $75~{ m MeV}$ bei LEP200
Gluonen	QCD Kopplung $lpha_s$ (M $_{ m Z^0}$) auf ca. 5 $\%$ bei LEP100
Photon	Photonstruktur auf 10 -30% bei LEP100 -200

Messungen zur Photonstruktur geben Aufschluß über ein fundamentales Eichboson des Standardmodells.

Die integrierten Luminositäten

Limit der tiefinelastischen Elektron-Photon Streuung

Using:

$$egin{array}{rcl} 2xF_{\mathrm{T}}^{\gamma} &=& rac{Q^2}{4\pi^2lpha} \,\sigma_{\mathrm{TT}}(x,Q^2) \ F_{\mathrm{L}}^{\gamma} &=& rac{Q^2}{4\pi^2lpha} \,\sigma_{\mathrm{LT}}(x,Q^2) \ F_2^{\gamma} &=& 2xF_{\mathrm{T}}^{\gamma}+F_{\mathrm{L}}^{\gamma} \end{array}$$

Im Limit $(p \cdot q)^2 - Q^2 P^2 pprox (p \cdot q)^2$ reduziert sich der Wirkungsquerschnitt zu:

$$\frac{d^{4}\sigma}{dx \, dQ^{2} \, dz \, dP^{2}} = \frac{d^{2}N_{\gamma}^{\mathrm{T}}}{dz \, dP^{2}} \cdot \frac{2\pi\alpha^{2}}{x \, Q^{4}} \cdot \left[1 + (1 - y)^{2}\right] \cdot \frac{dx \, dQ^{2} \, dz \, dP^{2}}{\left[2x F_{\mathrm{T}}^{\gamma}(x, Q^{2}) + \frac{2(1 - y)}{1 + (1 - y)^{2}} F_{\mathrm{L}}^{\gamma}(x, Q^{2})\right]}$$

$$\min \frac{d^{2}N_{\gamma}^{\mathrm{T}}}{dz \, dP^{2}} = \frac{\alpha}{2\pi} \left[\frac{1 + (1 - z)^{2}}{z} \frac{1}{P^{2}} - \frac{2m_{\mathrm{e}}^{2} z}{P^{4}}\right]$$

Vorhersagen zur Photonstruktur

QED Struktur

- 1. Die punkt-artige Komponente führt zum Anstieg der QED Struktur für große x.
- 2. Die Struktur virtueller Photonen ist unterdrückt.
- 3. Virtuelle Photonen haben eine longitudinale Komponente.
- 4. Interferenzterme sind wichtig für virtuelle Photonen.

Hadronische Struktur

- 1. Im Bereich in dem die punkt-artige Komponente dominiert, gelten die globalen Aussagen der QED modulo QCD Korrekturen.
- 2. Kennt man die Partonverteilungen im Photon bei einem Impulsübertrag, dann wird die Entwicklung mit Q^2 von der perturbativen QCD vorhergesagt.
- 3. Insbesondere zeigt die Q^2 Entwicklung der Photonstruktur einen positiven Anstieg für alle Werte von x.
- 4. Die QCD Dynamik erzwingt bei festem Q^2 einen steilen Anstieg der Struktur für kleine Werte von x.

Genauigkeit bestimmt werden.

Azimuthale Korrelationen

$e\gamma \rightarrow e\mu\mu$

 $egin{array}{ll} \mathrm{d}\sigma &\propto & 1ho(y)F_\mathrm{A}^\gamma/F_2^\gamma \cos\chi+rac{1}{2}\epsilon(y)F_\mathrm{B}^\gamma/F_2^\gamma \cos2\chi \ \epsilon(y)=rac{2(1-y)}{1+(1-y)^2}pprox 1, \
ho(y)=rac{(2-y)\sqrt{1-y}}{1+(1-y)^2}pprox 1 \end{array}$

Die Abhängigkeit von χ gibt Zugang zu anderen Strukturfunktionen neben F_2^{γ} .

Dies ist die erste Messung die über die Messung des differentiellen Wirkungsquerschnitts hinausgeht.

Charm Quarks identifiziert durch D*s

Ein klares Signal im $\Delta(M) = M(D^{\star}) - M(D^{0})$ Massenspektrum ist sichtbar für anti-tagged und tagged Ereignisse

Die erste Messung von $F_{2, ext{c}}^{\gamma}$

punkt-artig, rein perturbative QCD Vorhersage, dominiert bei großen-x hadron-artig, hängt von f_g^γ ab, dominiert bei kleinen-x

Beschreibung des hadronischen

Endzustands

Signifikante Unterschiede zwischen Daten und Monte Carlo Vorhersagen sind sichtbar (OPAL '96)

Messungen bei kleinem Q^2 und x

GRV(LO) und SaS1D sind etwas niedrig im Vergleich zu den Daten, die zusätzlich bezüglich des P^2 Effekt nicht korrigiert sind.

Der generelle Trend der Daten wird von den Parametrisierungen beschrieben.

Beschreibung der Daten durch PDF's

Experiment

werden, aber...

Parametrisierung der Q^2 Entwicklung

Q^2 Entwicklung für $m n_f=3$

OPAL Far Forward Kalorimeter

Welche Vorhersagen sind verifiziert ?

QED Struktur

- 1. Der Anstieg der QED Struktur für große \boldsymbol{x} ist klar ersichtlich.
- 2. Die P^2 Unterdrückung der QED Strukturfunktion ist verifiziert.
- 3. Es gibt eine indirekte Evidenz der Existenz der Interferenzterme.

Hadronische Struktur

- 1. Die Q^2 Entwicklung der Photonstruktur zeigt einen deutlich positiven Anstieg für alle Werte von x.
- 2. Die Akzeptanz reicht nicht aus, um den Anstieg der Struktur für kleine Werte von x zu sehen.

Der Linearbeschleuniger (LC) wird eine wichtige Rolle beim Test dieser fundamentalen Vorhersage der perturbativen QCD spielen.

Zusammenfassung

1. Eine Vielzahl von Messungen zur Photonstruktur wurden durchgeführt. Die globalen Eigenschaften sind theoretisch verstanden, es gibt jedoch noch viel zu verbessern, um zu einer sehr präzisen Vermessung der Photonstruktur zu gelangen.

Ausblick

- 1. Mit der hohen Gesamtluminosität des LEP Programms und dem besseren Verständnis der zugrundeliegenden Physik werden eine Reihe von Messungen in Zukunft noch genauer werden.
- 2. In ferner Zukunft erlaubt das geplante Linearbeschleuniger Programm eine Erweiterung der Vermessung der Photonstruktur auf wesentlich höhere Impulsüberträge.

Folien: http://home.cern.ch/nisius Mehr Informationen: Richard Nisius, hepex/9912049