

The study of jet production in $\gamma\gamma$ interactions is a good tool to:

- 1. Study the structure of the photon and its interactions
- 2. Test the new $\gamma\gamma$ Monte Carlo generators (PYTHIA and PHOJET)
- 3. Compare with NLO perturbative QCD calculations

Photon-photon scattering

Exchange of two quasi-real photons (γ)

$$egin{array}{rcl} m{Q}_i^2 &=& 2m{E}_im{E}_i'(1-\cos{ heta}_i)pprox 0 \ m{W}^2 &=& m{s}_{\gamma\gamma} = \left(\sum\limits_hm{E}_h
ight)^2 - \left(\sum\limits_hm{p}_h
ight)^2 \end{array}$$

At $\sqrt{s_{e\,e}} = 130~{
m GeV}$, for $W^2 > 4~{
m GeV}^2$ and $Q_i^2 < 1~{
m GeV}^2$: $\sigma({
m e^+e^-}
ightarrow {
m e^+e^-} + hadrons) pprox 14~nb pprox 40 \cdot \sigma({
m e^+e^-}
ightarrow (\gamma, {
m Z}^0)
ightarrow hadrons)$

Monte Carlo models

PYTHIA 5.721 and PHOJET 1.05

Monte Carlo ingredients:

- 1. Leading order (LO) QCD matrix elements
- 2. Hard and soft processes
- 3. Total cross sections from Regge models
- 4. Initial state parton radiation
- 5. Fragmentation based on by JETSET 7.408
- 6. Multiple interactions

NLO calculations

 NLO calculations for inclusive jet cross sections by T. Kleinwort and G. Kramer, DESY-96-035 (1996), hep-ph/9509321 and Phys. Lett. B370 (1996) 141, hep-ph/9602418.

Event selection

- $W_{
 m ECAL} > 3~
 m GeV$
- Energy sum in all calorimeters less than 50 GeV
- Missing transverse energy less than 5 GeV
- Number of tracks $n_{
 m ch}>4$, sum of all charges less than 4
- Maximum momentum of any charged track less than 15 GeV
- No electron tags in forward calorimeters

 \Rightarrow **7663 events in 4.9** pb⁻¹

Cone jet algorithm

- Detector: tracks and calorimeter clusters
- Monte Carlo Generator: primary hadrons

Cone radius: $R = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2}$ pseudo-rapidity $\eta = -\ln \tan \frac{\theta}{2}$, azimuthal angle ϕ

Choice: $ig| oldsymbol{R}=1, \, ig| oldsymbol{\eta}^{
m jet} ig| < 1, \, oldsymbol{E}_{
m T}^{
m jet} > 3\,{
m GeV}$

Jet multiplicity and background contribution

	0-jet	1-jet	2-jet
data	6813	602	132
$\gamma\gamma ightarrow au au$	2.7 ± 0.7	1.9 ± 0.6	0.6 ± 0.4
$e\gamma ightarrow e + had$	60.5 ± 5.5	1.0 ± 0.7	< 0.5
(single tagged)			
$e^+e^- ightarrow ext{had}(\gamma)$	4.3 ± 0.3	3.8 ± 0.3	1.1 ± 0.2
$e^+e^- ightarrow au au (\gamma)$	0.06 ± 0.01	0.09 ± 0.02	0.06 ± 0.01

	3-jet	4-jet
data	8	1
$\gamma\gamma ightarrow au au$	< 0.3	< 0.3
$e\gamma ightarrow e+had$	< 0.5	< 0.5
$e^+e^- o$ had(γ)	0.1 ± 0.1	< 0.1
$e^+e^- ightarrow au au(\gamma)$	< 0.01	< 0.01
	,	,

Total background less than 1%

Systematic error determination

- 1. ECAL energy scale varied by $\pm 5\%$
- 2. Degradation of track resolution in MC
- 3. Unfolding using PYTHIA and PHOJET

$\langle \pmb{E}_{\mathrm{T}}^{\mathrm{jet}} angle \left(\mathrm{GeV} ight)$	$d\sigma/dE_{ m T}^{ m jet}({ m pb}/{ m GeV})$
3.45 ± 0.02	$167.2 \pm 6.8 \pm 31.0$
4.46 ± 0.02	$33.5~\pm~2.4~\pm11.8$
5.70 ± 0.03	$22.5~\pm~2.0~\pm~6.3$
7.39 ± 0.04	$7.8~\pm~1.1~\pm~1.5$
9.59 ± 0.08	$1.4~\pm~0.3~\pm~0.4$
13.14 ± 0.11	$1.0~\pm~0.3~\pm~0.4$

 \Rightarrow Need to improve on the systematic error

Conclusions

Jet production in $\gamma\gamma$ interactions at $\sqrt{s_{ee}} = 130 - 136 \, {
m GeV}$ was studied using a cone algorithm with $E_{
m T}^{
m jet} > 3 \, {
m GeV}$ and $|\eta^{
m jet}| < 1$, leading to the following results.

- 1. Direct and resolved events can be separated by measuring x_{γ} .
- 2. The PYTHIA and PHOJET Monte Carlo models with the SaS-1D or GRV parton density functions are in reasonable agreement with the data. The jet cross section using the LAC1 parton density function is too large.
- 3. NLO calculations on the parton level are found to be in good agreement with the data corrected to the hadron level.