

The 'history' of the Photon

Date	Event	
8.11.1895	Röntgen discovers the X-rays	
	(first Nobel Prize for physics 1901).	
1900	Planck interprets light as 'energy quanta'	
	$E=h u$, with $h=6.626\cdot 10^{-34}Js$.	
1 905	Einstein explains the photoelectric effect	
	by 'photons'.	
1922	Discovery of Compton scattering	
	$\mathrm{e}\gamma ightarrow\mathrm{e}^{\prime}\gamma^{\prime}.$	
1927	Heisenberg formulates the uncertainty	
	principle e. g. $\Delta E \Delta t \geq \hbar$.	
1930	Fist attempt to measure photon-photon	
	scattering by Hughes et. al.	
1936	First calculation of photon-photon	
	scattering by Euler und Kockel.	
1981	First measurement of the hadronic structure	
	function of the photon by PLUTO.	
2011	The Higgs Boson will be produced through	
	photon-photon fusion at TESLA?	

Properties of the photon

Property	
Mass (m)	$0 (m/m_{ m e} < 4 \cdot 10^{-22},$ [1])
Charge (Q)	$0 (Q/Q_{ m e} < 5 \cdot 10^{-30},$ [2])
Velocity (c)	299792458 m/s
Spin parity (J^{PC})	1
Coupling ($lpha$)	1/137.03599976(50)
Task	Carrier of the electromagnetic
	interaction, no self-coupling

[1] Roderic Lakes, Phys. Rev. Lett. 80 (1998) 1826.[2] Georg Raffelt, Phys. Rev. D50 (1994) 7792.

Photon-photon scattering anno 1930

The photon in our world

	Observation	photon energy
		meV
	Rotations of molecules	
		eV
	Spectrum of the sun	
	Hydrogen atomic spectra	
		keV
	X-ray radiation	
		MeV
	e^+e^- pair creation	
		GeV
\Rightarrow	Bremsstrahlung at LEP	\Leftarrow
		TeV
	Cosmic rays	

The photon in the standard model

The building blocs of matter

Quarks	$\left(egin{array}{c} u \ d \end{array} ight) \left(egin{array}{c} c \ s \end{array} ight) \left(egin{array}{c} t \ b \end{array} ight)$
Leptons	$\left(egin{array}{c} {m u_{ m e}} \\ { m e} \end{array} ight) \left(egin{array}{c} {m u_{\mu}} \\ {m \mu} \end{array} ight) \left(egin{array}{c} {m u_{ au}} \\ {m au} \end{array} ight)$

Interactions of matter via gauge bosons Photon (γ), W $^\pm$ and Z 0 bosons and gluons

Gauge boson measurements at LEP

Object	Measurement
Z ⁰	Precision measurements at LEP100
w±	M $_{ m W}$ to $40~{ m MeV}$ by LEP200
Gluons	QCD coupling $lpha_s$ (M $_{{\sf Z}^0}$) to about $~5\%$ at LEP100
Photon	Photon structure to 10 -30% at LEP100 -200

Measurements of the photon structure give insight into a fundamental gauge boson of the standard model.

Predictions for the photon structure

QED structure

- 1. The point-like component leads to a rise of the QED structure at large x.
- 2. The structure of virtual photons is suppressed.
- 3. Interference terms are important for virtual photons.

4. •••

Hadronic structure

- 1. QCD predicts the charm production at large x at NLO accuracy.
- 2. The QCD dynamics enforces a steep rise of the photon structure for small values of x, at fixed Q^2 .
- 3. The evolution of the photon structure exhibits a positive slope for all values of x.

4. •••

The integrated luminosity of the LEP programme exceeds 1000 pb $^{-1}$

The integrated luminosities

Ilmit of deep inelastic electron-photon scattering	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	e limit $(p \cdot q)^2 - Q^2 P^2 pprox (p \cdot q)^2$ the cross section reduces to:	$rac{\mathrm{d}^4\sigma}{\mathrm{d}x\mathrm{d}Q^2\mathrm{d}z\mathrm{d}P^2} \;=\; rac{\mathrm{d}^2N_\gamma^\mathrm{T}}{\mathrm{d}z\mathrm{d}P^2}\cdotrac{2\pilpha^2}{xQ^4}\cdotig[1+(1-y)^2ig]\cdot igg[2xF_\mathrm{T}^\gamma(x,Q^2)+rac{2(1-y)}{1+(1-y)^2}F_\mathrm{L}^\gamma(x,Q^2)igg]$	with: $\frac{\mathrm{d}^2 N_\gamma^{\mathrm{T}}}{\mathrm{d}z \mathrm{d}P^2} = \frac{lpha}{2\pi} \left[\frac{1+(1-z)^2}{z} \frac{1}{P^2} - \frac{2m_\mathrm{e}^2 z}{P^4} \right]$
The lim	Using:	and the limit	dx d	

The muon pair final state is a clear topology with good mass resolution.

The scattered electron is clearly visible. However, the hadronic final state may partly disappear along the beam axis.

A clear signal in the $\Delta(M) = M(D^{\star}) - M(D^{0})$ mass spectrum is seen for anti-tagged and tagged events

point-like, purely perturbative QCD prediction, dominates at high-*x* hadron-like, depends on f_a^{γ} , dominates at low-x

There are significant differences between the data and the Monte Carlo predictions (OPAL '96)

Measurements at low Q^2 and x

GRV(LO) and SaS1D are slightly too low compared to the data.

OPAL Collab., Eur. Phys. J. C18 (2000) 15.

Data description by existing pdf's

Experiment

parametrisations.

Q^2 evolution compared to linear fits

Q^2 evolution after charm subtraction

Which prediction is verified ?

QED structure

- 1. The rise of the QED structure for large x ist clearly seen.
- 2. The suppression of the QED structure function with the photon virtuality is verified.
- 3. There is an indirect evidence for the existence of the interference terms.

Hadronic structure

- 1. The measured $F_{2,c}^{\gamma}$ is accurately described by NLO QCD at large x.
- 2. The acceptance is not sufficient to see the predicted rise of F_2^{γ} at low values of x.
- 3. The Q^2 evolution of the photon structure shows a clear rise for all values of x.

Leading order diagrams

$oldsymbol{W}$ distributions for anti-tagged events

Charm cross-section as a function of $oldsymbol{W}$

The charm cross-section rises faster than the total hadronic cross-section.

The NLO prediction is too low at medium x values

Comparison with NLO predictions

ZEUS Preliminary

The discrepancy gets larger with increasing factorisation scale.

The NLO predictions are consistent with the data.

$rac{{ m d}^2 N_\gamma^{ m T}}{{ m d}z { m d}P^2} \;=\; rac{lpha}{2\pi} \left[rac{1+(1-z)^2}{z} rac{1}{P^2} - rac{2m_{ m e}^2z}{P^4} ight]$
$ ilde{f}_{\gamma} \;=\; ilde{f}_{\gamma}^{ m T} + rac{2(1-z)}{1+(1-z)^2} ilde{f}_{\gamma}^{ m L}$
$ ilde{f}_{\gamma}(x_{\gamma},Q^2,P^2) \; \equiv \; \sum_{k=1}^{\mathrm{n}_{\mathrm{f}}} \left[q_k^{\gamma}(x_{\gamma},Q^2,P^2) + ar{q}_k^{\gamma}(x_{\gamma},Q^2,P^2) ight] + rac{9}{4} g^{\gamma}(x_{\gamma},Q^2,P^2)$
$ ilde{f}_{ m p}(x_{ m p},Q^2) \;\equiv\; \sum_{k=1}^{ m n_{ m f}} \left[egin{array}{c} q^{ m p}_k(x_{ m p},Q^2) &+& ar{q}^{ m p}_k(x_{ m p},Q^2) \end{array} ight] + egin{array}{c} rac{9}{4} g^{ m p}(x_{ m p},Q^2) \ rac{1}{4} g^{ m p}(x_{ m p},Q^2) \end{array} ight]$
with:
$\frac{\mathrm{d}^5\sigma}{\mathrm{d}z\mathrm{d}x_{\gamma}\mathrm{d}x_{\mathrm{p}}\mathrm{d}\cos\theta^{\star}\mathrm{d}P^2} \propto \frac{1}{z}\frac{\mathrm{d}^2N_{\gamma}^{\mathrm{T}}}{\mathrm{d}z\mathrm{d}P^2}\frac{\tilde{f}_{\gamma}(x_{\gamma},Q^2,P^2)}{x_{\gamma}}\frac{\tilde{f}_{\mathrm{p}}(x_{\mathrm{p}},Q^2)}{x_{\mathrm{p}}} M_{\mathrm{SES}}(\cos\theta^{\star}) ^2$
The concept of effective parton distribution functions

Structure of quasi-real photons from H1

The hadron-like part is too low for all x, and the quark part is not sufficient \Rightarrow gluons are needed.

A strong suppression with increasing photon virtuality is observed.

testing this fundamental prediction of perturbative QCD.

Conclusion

 Many different measurements concerning the structure of the photon have been performed. The global properties of the photon are theoretically understood, however, there are many aspects which need improvements to arrive at a precise understanding of the structure of the photon.

Outlook

- With the large luminosity of the LEP programme, and the improved understanding of the underlying physics, several measurements will get more precise.
- In the far future, the planned linear collider programme will allow for an extension of the measurements of the photon structure to much larger momentum transfers.