QCD Results from the LHC

Ringberg Castle, September 28, 2011 Richard Nisius (MPP München) Richard.Nisius@mpp.mpg.de

Introduction	Jet cross-sections	Z/W + jets	Top-quark physics	Backup

Overview

Topics covered

- Inclusive jet production
- Exclusive jet production
- Rapidity gaps, BFKL signatures
- W/Z + n-jet production
- The tt cross-section
- The top-quark mass from the $t\bar{t}$ cross-section
- The charge asymmetry in $t\overline{t}$ production

Un-covered topics

- Underlying event structure, hadron production, jet shapes, track jets, jet fragmentation functions, W/Z+b-jet-production, direct photons, ...
- Total pp cross-section
- QCD properties of Pb-Pb collisions

Sorry, the title should really be - Selected QCD Results from ATLAS and CMS -

Theoretical predictions and Monte Carlo tunings

The classes of predictions

- Leading Order (LO) $2 \rightarrow 2$ Matrix Elements (ME) plus Parton Shower (PS). and underlying event (UE): Pythia, Herwig+Jimmy.
- LO 2 \rightarrow n ME: Sherpa, MadGraph, Alpgen plus PS and UE via Pythia or Herwig(PS)+Jimmy(UE).
- NLO calculations for up to n=3 partons: MCFM and NLOJet++.
- NLO calculations plus parton showers: MC@NLO (plus Herwig+Jimmy) and Phoweg (plus Pythia or Herwig+Jimmy).
- All order prediction of wide-angle emissions: HEJ.

The Monte Carlo tunings to data

- ATLAS: Pythia (AMBT, MC09'), Herwig (AUET1),
- CMS: Pythia (D6T, Z2, 2C) and Herwig (2.3).

This is a variety of predictions, the data have been compared to all of them.

Top-quark physics

Conclusions

Backup

A six-jet event at the LHC - ATLAS

- A rich environment with many jets, underlying event and pile-up, $\langle \mu
angle pprox 0.1 - 3$ in 2010.

A high performance jet algorithm is needed to get the physics out.

The anti- $k_{\rm t}$ algorithm - the present work horse

The jet shapes

Herwig parton level. + 10⁴ soft

ghosts.

The average jet area as function of p_t

Some details on the algorithm

- $-d_{ij} = \min(1/k_{t,i}^2, 1/k_{t,i}^2) \frac{\Delta_{ij}^2}{B^2}, \quad d_{iB} = 1/k_{t,i}^2.$ $-\Delta_{ii}^2 = (y_i - y_i)^2 + (\Phi_i - \Phi_i)^2$, R = 0.4...1.0
- For $\Delta_{ij} > R$ the jet with Max k_t stays alone.
- The resulting jet shapes are round and rigid.
- The area is flat with $p_t \rightarrow$ stable pile-up contribution.
- BR = Change in p_t due to re-assignment of non-pileup particles when adding 25 pile-up events.

The anti- k_t algorithm has very good properties.

QCD Results from the LHC **Ringberg Castle** September 28, 2011 **Richard Nisius**

Comparison to NLO in bins of rapidity

Inclusive jet cross-section - CMS

- At high pt the largest theoretical unc. is due to PDFs, i.e. the data start to constrain them.
- Experimental uncertainty mainly from Jet Energy Scale (JES), which will decrease.
- The NLOJet++ description of the data is fair, but generally slightly high, esp. at large |y|.

Agreement is found within 20%, however deteriorating for larger rapidities.

Top-quark physics

Backup

Inclusive di-jet cross-section - CMS

The di-jet cross-section is well described, but need smaller exp. unc. to constrain the PDFs.

Backup

The 3-jet to 2-jet ratio - CMS

 $-\Delta p_{
m t}pprox$ 12%(5%) for 50 GeV(1 TeV) and $\Delta H_{
m T}pprox$ 6%(3.5%) for 50 GeV(1 TeV).

- The Pythia (MadGraph and Herwig) model describes the shapes to $\mathcal{O}(20\%)$.
- The Pythia corrections to the particle level amount to about 4%(2%) for $H_{
 m T}<(>)$ 0.5 TeV.

The corrected distributions will be compared to LO 2 \rightarrow n-parton predictions.

The 3-jet to 2-jet ratio - CMS

The corrected 3-jet to 2-jet ratio

Comparison to various predictions

- Experimental unc. (4-10)% dominated by the knowledge of the p_t dependence in the MC. - Good description at large H_T . Predictions overestimate data at low- H_T , but for MadGraph.

The low- H_T region needs further attention.

Inclusive multi-jet production - ATLAS

- The corrections are based on Alpgen+(Herwig+Jimmy).
- $-\Delta\sigma$ (*JES*) pprox +5%(+2.5%) for 60 GeV(1 TeV), and 'larger' -3% everywhere.
- Compare to LO for R=0.4 (less UE dependent) and to NLO for R=0.6 (less scale dep.).

The inclusive jet multiplicty is well described by the predictions.

Z/W + iets

Top-quark physics

Gap fraction

Di-jet production with jet veto - ATLAS

The strategy

- Study jet activity in gap between pair of jets with: A) highest $p_t \Rightarrow p_{t,1}$, $p_{t,2}$ similar
 - B) largest $|\Delta y| \Rightarrow M_{12} > \overline{p}_{t}$.
- I) Fraction of events *f* with no jet above $p_t = Q_0$. Study two observables within gap: II) Average jet multiplicity $\langle N(p_t > Q_0 \gg \Lambda) \rangle$.
- This probes: wide angle soft gluon radiation for $Q_0 \ll \overline{p}_{\rm t}$, BFKL dynamics for large $|\Delta y|_{\rm max}$, and color singlet exchange if both are fulfilled.
- The distributions are corrected to particle level.
- $-\Delta$ (*JES*) (2-5)% in barrel and 13 % for $|\eta| > 3.2$.
- $\Rightarrow \Delta \approx 3\%(7\%), 3\%(6\%), 5\%$, for f, Δy and $\langle N \rangle$.

The findings

- Herwig and Pythia are ok, except for large Δy .
- Alpgen has too many jets, except for low scales.

Complicated interplay of various scales.

Top-quark physics

Backup

Di-jet production with jet veto - ATLAS

Gap-fraction $f(\Delta v)$ Gap fraction ATLAS 240 ≤ D_ < 270 GeV (+3) Data 2010 Theory / Data △ 210 ≤ p_y < 240 GeV (+2.5)</p> HEJ (parton level) POWHEG + PYTHIA $180 \le \overline{D} \le 210 \text{ GeV}$ (+2) POWHEG + HERWIG 150 ≤ p, < 180 GeV (+1.5) $\leq \overline{p}_{-} < 150 \text{ GeV} (+1)$ Leading p_ dijet selection ≤ p_ < 120 GeV (+0.5) Q. = 20 GeV 0.5 ■ 70 ≤ p , < 90 GeV (+0)</p> A) ATLAS 4 in and 1.5 1.5 2 1.5 0.5 1.5 1.2 0.8 0.6 2 Δv

Ratios to predictions

The predictions

- HEJ = all order wide-angle.
- From Powheg = NLO di-jet, the Pythia-Herwig difference is smaller than the HEJ fact. scale, PDF, α_s uncertainties
 ⇒ keep HEJ at parton level.

The findings

- The NLO prediction has too much jet activity.
- Phoweg + Pythia is closer to data than with Herwig.
- HEJ has too few jets, especially for large Δy and at large \overline{p}_t/Q_0 for all Δy .

The largest deviations are seen at large \overline{p}_t/Q_0 and/or large Δy .

Top-quark physics

W/Z + 1-jet production - ATLAS

- Determining the ratio $\frac{W(\rightarrow \ell \nu) + 1 \text{-jet}}{Z(\rightarrow \ell^+ \ell^-) + 1 \text{-jet}} (p_t > p_t^0)$ constitutes a precision test of QCD.
- Use $p_{
 m t} >$ 30 GeV, $|\eta| <$ 2.8, veto events with additional jets with $p_{
 m t} >$ 30 GeV.
- All EW background estimated from MC, QCD background is taken from data side-bands.
- Bgd in % for W(Z): EW: 3.4(1) e, 5(1) μ QCD: 19(0.3) e, 3.2(0.3) μ .
- Data corrected to particle level. Most uncertainties cancel in the ratio.

First analysis of a potentially very precise challenge for QCD.

Top-quark physics

The combined result

Backup

W/Z + 1-jet production - ATLAS

The muon channel result

Electron: 8.73 \pm 0.30 \pm 0.40 phase space, (e and μ have slightly different acceptances).

Good agreement at low p_t , at large p_t the data is statistically limited.

Backup

The tt cross-section - CMS

The sensitive distribution

Some analysis details

- Use one discriminative variable.
- Combine lepton channels.
- 5 0 5 0 Secondary vertex mass(GeV Exploit a number of statistically independent sub-sets of data with different signal to background compositions.
- The analysis is already systematics limited for the 2010 data with $\mathcal{L}_{int} = 36 \text{pb}^{-1}$.
- Use profile likelihood, i.e. allow systematics to cancel each other, within bounds.

The analyses explores one observable for different jet and *b*-jet multiplicities.

The combined fit

The tt cross-section - ATLAS

- Very similar to CMS, however, uses four distributions and no *b*-tagging (was largest syst. for ATLAS).
- QCD and W+jets (normalization) from data, other from MC.
- Example: $H_{\mathsf{Tp},3} = \frac{p_{\mathsf{t}}(3)+p_{\mathsf{t}}(4)}{p_{\mathsf{t}}(1...4)+p_{\mathsf{t}}(\ell)+p_{\mathsf{t}}(\nu)}, \eta^{\ell}, p_{\mathsf{t},\mathsf{max}}, \mathsf{aplanarity}.$
- Likelihood fit gives fractions and nuissance parameters.
 The fit improves on the data description.

The analyses explores various obervables for different jet multiplicities.

 $\sigma_{\hat{t}\hat{t}}$ [pb]

10²

10<u></u>⊨

Top-quark physics

Backup

The tt cross-section - Results

Top-quark physics

Backup

Measure $m_{ m top}$ from the $\sigma_{ m t\bar{t}}$ - general considerations

The strategy

- $-\sigma_{t\bar{t}}(m_{top})$ is known at NLO, NLO+(N)NLL or approx. NNLO.
- Measure $\sigma_{t\bar{t}}(m_{top})$, profit from $\frac{\Delta m_{top}}{m_{top}} \approx \frac{1}{5} \frac{\Delta \sigma_{t\bar{t}}}{\sigma_{t\bar{t}}}$ - So: $\sigma_{t\bar{t}}(m_{top}) = (8.2 \pm 0.8)$ pb (10%)

$$\Rightarrow$$
 $m_{
m top}$ = (163 \pm 3) GeV (2%).

The caveat

- This is only true if the measurement of $\sigma_{t\bar{t}}$ does not depend on m_{top} itself.
 - However, the acceptance is not flat, but a function of the m_{top} (MC) parameter used. in the LO (NLO) Monte Carlo.
- Use m_{top} (pole): Treat quark as free and long lived, or m_{top} (\overline{MS}): Treat mass as a coupling.
- Relate m_{top} ($\overline{\text{MS}}$) and m_{top} (pole), i.e. m_{top} (pole) = 172 GeV $\Rightarrow m_{\text{top}}(\overline{\text{MS}})$ = 162 GeV.
- The difference of m_{top} (MC), m_{top} (pole) is expected to be $\mathcal{O}(1 \text{ GeV})$ so: Where to put the data

The dependence on the mass definition is significant.

Measure $m_{\rm top}$ from the $\sigma_{ m t\bar{t}}$ - results

Interprete the result $m_{\rm ton}({\rm direct}) = (173.18 \pm 0.56 \pm 0.76) \,{\rm GeV}$ <1 GeV (0.6%) $-\Delta \sigma_{t\bar{t}}(exp) = 13\% \Rightarrow \Delta m_{top}(exp) = 3\%,$ But: $\frac{\sigma_{t\bar{t}}(160) - \sigma_{t\bar{t}}(172.5)}{\sigma_{t\bar{t}}(172.5)} = 18\%$ \Rightarrow Need to find an m_{top} independent !? selection. [dq] _{ii} (m^{pda}) [dd] m_{mn} = (167.3 + 5.3 - 5.5) GeV m.... = (165.8 + 8.5 - 9.6) GeV ور مر سال 250 م ∆=-5.3 GeV for ∆(m^{MC}) = -10 GeV △=-3.3 GeV for △(m^{MC}) = -10 GeV 200 150F LHC Tevatron سيليب آله 160 165 170 175 165 170 mpole [GeV] mpole [GeV] Comparison to D0 measurement $-\sigma_{t\bar{t}}(exp) = 8.13 + \frac{1.02}{-0.90}$ pb yields $\Delta m_{top} = O(5)$ GeV. - Use $\sigma_{t\bar{t}}(m_{ton}^{pole})$ and $\sigma_{t\bar{t}}(\overline{MS})$ while assuming $m_{ton}^{MC} = m_{ton}^{pole}$ or $m_{\text{top}}^{\text{MC}} = m_{\text{top}}^{\overline{\text{MS}}} \Rightarrow \Delta m_{\text{top}} = \mathcal{O}(3) \text{ GeV}.$

The measurement is hampered by its interpretation.

The charge (forward-backward) asymmetry

The formulas

- Rapidity: $y = \frac{1}{2} \ln \frac{E+p_z}{E-p_z}$. - Single Asymmetry: $A^{p\bar{p}} = \frac{N_t(y \ge 0) - N_{\bar{t}}(y \ge 0)}{N_t(y \ge 0) + N_t(y \ge 0)}$. - Difference: $\Delta y = y_t - y_{\bar{t}} = q_\ell(y_\ell - y_{had})$. - Pair Asymmetry: $A^{t\bar{t}} = \frac{N(\Delta y \ge 0) - N(\Delta y \le 0)}{N(\Delta y \ge 0) + N(\Delta y \le 0)}$. - $A^{t\bar{t}}/A^{p\bar{p}}(QCD, \%_0) = 8/5(\approx 1)$ TeV (LHC). - CP-Invariance: $CP \mid N_t(y) \rangle = \mid N_{\bar{t}}(-y) \rangle$. Charge \leftrightarrow forward-backward, if defined.
- Only caused by quark initiated processes, i.e. gluon initiated processes dilute $A^{f\bar{f}}$. $\Rightarrow A^{f\bar{f}}$ (Tevatron) > $A^{f\bar{f}}$ (LHC) because $q\bar{q}/gg \approx 90/10$ (15/85) for Tevatron (LHC).
- $-A^{f\bar{f}} > 0$, however selecting 1) or 2) could help to look for consistency.
- The asymmetry is NLO in $\sigma_{t\bar{t}}$, i.e. it is only known at LO! $A^{f\bar{f}}$ depends on $p_t(t\bar{t}), \Delta y, M_{t\bar{t}}, \dots$
- $-\textit{A}^{t\bar{t}} > \textit{A}^{p\bar{p}}$ because all pairs contribute, i.e. $\textit{A}^{t\bar{t}}$ is theoretically preferred.
- − The channel tt → lepton+jets is used. $A^{p\bar{p}}$ only needs $y_{had} = y(qqb)$. In contrast, $A^{t\bar{t}}$ also needs $y_{\ell} = y(b\ell\nu)$ which has a worse angular resolution, i.e. experimentally $A^{p\bar{p}}$ is easier.

The asymmetry values measured at Tevatron created some excitement.

Z/W + iets

Top-quark physics

Backup

tT MC@NLO

W+jets

Multije

Dat

MC@NLO 3.4

PYTHIA 6 425 S0A-Pro

PYTHIA 6 425 D6-Pro

The charge asymmetry - Tevatron results

Beware!

21

Top-quark physics

Backup

The charge asymmetry - LHC analyses

Backup

The charge asymmetry - LHC results

Unfolded results on Att

The preliminary results

 $\begin{array}{lll} \mbox{ATLAS:} & \mbox{$A^{t\bar{t}}(|y_t|-|y_{\bar{t}}|)=(-2.4\,\pm1.6\,\pm2.3)\%$},\\ \mbox{CMS:} & \mbox{$A^{t\bar{t}}(y_t^2-y_{\bar{t}}^2)=(-1.3\,\pm2.6^{+2.6}_{-2.1})\%$}. \end{array}$

The predictions

0.6% (MC@NLO). $(1.1\pm0.1)\% \text{ (Rodriguez)}.$

- In addition, CMS does not find any significant dependence on $M_{
m t\bar{t}}$.

At LHC the asymmetry is found to be independent of $M_{t\bar{t}}$, and the SM decribes the data.

Introduction	Jet cross-sections	Z/W + jets	Top-quark physics	Conclusions	Backup

Conclusions and Outlook

- The LHC is a QCD machine and it performs beautifully $\mathcal{L} = 3.3 \, 10^{33}$ /cm²/s, $\mathcal{L}_{int} = 3.6$ fb. However, the ever increasing number of pile-up events is a continuous challenge.
- Statistics is plentiful, and the key to success is reducing the systematics, either by an even better detector understanding, or by optimizing observables.
- Jet physics is a very rich field with many predictions up to NLO. Here, reducing the jet energy scale uncertainty is the key to precision.
- The W/Z + jets processes offer some precision NLO QCD tests.
- Also top-quark physics offers many QCD observables and challenges to theory. Some interesting features of the Tevatron data could not be confirmed.
- As always, the close collaboration and interplay between theorists and experimentalists pays off in designing the analyses.
- Finally, my apologies to those interested in UE, soft QCD, track jets, *b*-jets,

There is lot more to come in the next years, stay tuned.

Introduction

Z/W + jets

Top-quark physics

Backup

Backup - Transparencies

QCD Results from the LHC Ringberg Castle September 28, 2011 Richard Nisius 🔹 🗆 👌 🖉 👌 🛓 🖉 오 🖓 25

Top-quark physics

Inclusive multi-jet production - ATLAS

 $-H_{T}^{(2)} = p_{t,1} + p_{t,2}$ has smallest scale uncertainty and mainly probes PDF and α_s . - Non.-Pert. effects taken from Pythia (LO ME \leftrightarrow LO ME+PS+UE) are about 5%. - NLOJet++ prediction shows an overall good description, but for low $H_{T}^{(2)}$.

Overall good description by NLO, but for low $H_T^{(2)}$. LO predictions are further away.

Di-jet production with jet veto - ATLAS

The findings for $\langle N \rangle$

- Deviations are enhanced when using $\langle N \rangle$.
- Phoweg + Pythia describes the data well.
- Phoweg + Herwig is far off especially at large Δy .
- HEJ has too little activity especially for large \overline{p}_t/Q_0

The findings for $f(\Delta y)$ f

Case B) $|\Delta y|_{\text{max}} (M_{\text{ij}} > \overline{p}_{\text{t}}),$ and $Q_0 = \overline{p}_{\text{t}}$ not fixed. Phoweg describes the data well with Pythia and Herwig. HEJ describes the data at low Δy , but has too many jets for large Δy .

Top-quark physics

The production of a W-Boson + 2-jets - Tevatron

The experimental facts

- Can not describe shoulder in *M*_{jj} distribution.
- Use additional Gauss to describe the difference.
- Subtract all background.
- Not confirmed by D0, set limit σ (145 GeV) < 1.9pb with 95%C.L.

Possible explanation

- Mis-reconstructed top-quarks peak at $\sqrt{m_{
 m top}^2-m_{
 m W}^2}!$
- Shift in single top + tt background wrt. WV can solve this.
- CDF sees to many single top events, but D0 does not!

An inconclusive situation.

QCD Results from the LHC Ringberg Castle September 28, 2011 Richard Nisius 《 마 사 (라 사 속 한 사 ~ 한 사 속 한 사 ~ 한 사 속 한 사 ~ 한 h ~ \oplus h ~ \oplus h ~ \oplus h ~ \oplus h ~ \oplus

Introduction	Jet cross-sections	Z/W + jets	Top-quark physics	Backup

The production of a W-Boson + 2-jets - ATLAS

- Try to mimic the CDF analysis, but: $\frac{WW}{W+n>2-jets}$ decreases by factor 5, i.e. $\frac{3.7}{22} \rightarrow \frac{15.3}{440}$. - Jet selection: $p_{\rm t} > 30$ GeV, $|\eta| < 2.8$, $|\Delta \eta| < 2.5$, $M_{\rm jj} > 40$ GeV, $\Delta \Phi_{\rm iet, Emiss} > 0.4$.

- Estimate background for QCD and the W+jets (normalization) from data.

There is no sign of an excess, the CDF result can not be confirmed.

Top-quark physics

Backup

The measured $m_{ m top}$ from the $\sigma_{ m tar t}$ - CMS

The m_{top}^{pole} mass

Brand new - Write-up not yet available.