Vom Wiegen schwerer Jungs die Bestimmung der Top-Quark Masse

Kolloquium der Fachgruppe Physik Wuppertal, 26. Juni 2017 Richard Nisius (MPP München) Richard.Nisius@mpp.mpg.de

<u>Übersicht</u>

Einführung

- Der LHC Beschleuniger

- Das ATLAS Experiment
- Ergebnisse
 - Top-Quark Physik
 - Top-Quark Masse
 - Kombination

AILAS Presminary =	n _{ky} euronary - May 20	17, L_ + 38 pt/ - 20.3 ft/	
		a constant	(
NAME AND ADDRESS OF TAXABLE PARTY.	_	300 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	
tanda da fan a fan an an	-	The set of second	
and the second		The second	
water and the second	-	100 C	
support to the second		The set of	-
Canada Per Name - Description of		The site of second	
Register, Striker, other states, or		THE ALL OF	
States of the local division of the local di		The set of	
and the second s	-	WAR and car	
at an a	180	and the	_
of successive index in success			
and a second			
	_		
and the second s		COOL MANYOR 1 14	_
104-15	-	the sensitivity	
	-	Distances of the second s	
Fasturbulk of \$154 sectors	- 18 A - 1	Tames and the	-

- Zusammenfassung

Vom Wiegen schwerer Jungs - die Bestimmung

Richard Nisius (MPP München)

Einführung

ATLAS

p-Quark Physik

op-Quark Masse

Kombination

Zusammenfassung

Backup

Der Large Hadron Collider, 2009^{++} , $E_p = 6.5 \text{ TeV}$

Die supraleitenden Magnete

Anzani	1232
Länge	14.3 m
Gewicht	35 t
B-Feld	8.4 T
Temperatur	1.9 K
Strom	11700 A
Energie	7.1 MJ

IHCh

Bis heute wurden 39M Top-Quark Paare erzeugt.

Vom Wiegen schwerer Jungs - die Bestimmung

Richard Nisius (MPP München)

Wuppertal, 26. Juni 2017 4 /41

v=18(620) km/h

590 t

Ein Vergleichsobjekt

Einführung LHC ATLAS Top-Quark Physik Top-Quark Masse Kombination Zusammenfassung Backup

Die Chronologie der Ereignisse

ttp://aflae.web.com.ch/Wites/public/EVTD(SPLAY/events.html

- 20.11.09 Start des LHC.
- 23.11.09 Kollisionen 2 x 0.45 TeV.
 - 08.12.09 Kollisionen 2 x 1.18 TeV.
 - 28.03.10 Start Datennahme 2 x 3.5 TeV (0.045/fb).
 - 2011 Haupt Datennahme 2 x 3.5 TeV.
 - 30.03.12 Start Datennahme 2 x 4 TeV.
 - 03.06.15 Start Datennahme 2 x 6.5 TeV.

Die Ausbeute an Top-Quark Paaren

– N_{Ereignisse} = Luminosität · Wirkungsquerschnitt (WQS)

Jahre	Energie	Luminosität	WQS	N(tī)
	[TeV]	[1/fb]	[pb]	Mio
2011	7	5.3	177	0.9
2012	8	21.7	252	5.5
2015+16	13	39.5	831	32.8

- Das sind 39.2 Millionen Top-Quark Paare.

Die Lernkurve am Beschleuniger ist sehr steil.

Vom Wiegen schwerer Jungs - die Bestimmung ...

Einführung LHC ATLAS Top-Quark Physik Top-Quark Masse Kombination Zusammenfassung Backup

Das Top-Quark - seine kurze Geschichte

Pressekonferenz März 1995

- Die sechs Quarks: $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} s \\ c \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$.
- Nach der Entdeckung des Bottom-Quarks (b) 1977 wurde das Top-Quark (Truth-Quark) als dessen Partner vorhergesagt.
- Nach erfolglosen Suchen z.B. am LEP Beschleuniger, wurde es schlie
 ßlich 1995 am Tevatron entdeckt.
- Es ist so kurzlebig, dass es als einziges Quark keine Hadronen bildet, sondern *quasi-frei* zerfällt.

Der Stand der Dinge 1998

Die Massenhierarchie

- Die Massenhierarchie der Quarks ist mit $\frac{m(t)}{m(u)} = \mathcal{O}(10^5)$ sehr groß und bis heute auch nicht fundamental verstanden.

Top-Quarks werden detailliert vermessen.

Vom Wiegen schwerer Jungs - die Bestimmung ...

Die Produktion von Top-Quark Paaren am LHC

Quark-induzierte Prozesse (ca 10%)

 $\widehat{f}_{q/p}$

Gluon-induzierte Prozesse (ca 90%)

- Der Wirkungsquerschnitt ist: $\sigma(t\bar{t}) = 831$ pb für $m_{top} = 172.5$ GeV und $\sqrt{s} = 13$ TeV.

Am Tevatron (pp̄ bei 2 TeV) war die Produktion von Quark-induzierten Prozessen dominiert.

Der LHC Beschleuniger ist eine Fabrik für Top-Quark Paare.

Der Zerfall der Top-Quark Paare

Top-Quarks zerfallen fast immer über
 t → W b. Die Ereignisse werden
 daher nach W-Zerfällen klassifiziert.

- Dilepton: geringe Rate (4%), hohe Reinheit, kinematisch unterbestimmt.
- Lepton + Jets: mittlere Rate (30%),
 Lepton 'Etikett', guter Kompromiss.
- Jets: höchste Rate (46%), aber auch größter Untergrund.

Die Lepton + Jets und Dilepton Kanäle liefern die kleinsten Fehler in der Top-Quark Masse

Vom Wiegen schwerer Jungs - die Bestimmung

Richard Nisius (MPP München)

Vom Wiegen schwerer Jungs - die Bestimmung ...

Richard Nisius (MPP München)

TLAS TO

Top-Quark Physik

Top-Quark Mass

Die Unsicherheit in der Jetenergie Skala (JES)

- Ein Ereignis mit acht Jets mit $p_{\rm T} \ge$ 60 GeV.
- Die transversalen Impulse der zwei Jets mit höchstem p_T sind 290 GeV und 220 GeV.
- Das Ereignis hat $\Sigma \textit{E}_{T}$ = 890 GeV und \textit{E}_{T}^{miss} = 21 GeV.
- Für hohe Präzision in m_{top} ist die Möglichkeit einer in-situ Eichung basierend auf M_W extrem hilfreich.

Eine kleine JES-induzierte Unsicherheit in m_{top} ist wichtig.

JES Unsicherheit versus Jet - pT

Vom Wiegen schwerer Jungs

Unser Modell vom Wiegen

 Eine Waage und Personen (oder Objekte) zum Wiegen.

 Vorsicht, Messunsicherheiten beachten und Kontrollmessungen machen.

Vom Wiegen der Top-Quarks

- Genügend Ereignisse und ein gut zu kontrollierender Untergrund.
- Da $\tau = 10^{-24}$ s, sehen wir nur Zerfallsprodukte.
- Die Bestimmung von m_{top} ist mehr eine Spurensuche im Schnee als das Wiegen von Panzerknackern auf einer Waage.

Die Messung von m_{top} bedeutet eine Rekonstruktion aller Zerfallsprodukte.

Vom Wiegen schwerer Jungs - die Bestimmung ...

Einführung LHC ATLAS Top-Quark Physik Top-Quark Masse Kombination Zusammenfassung Backup

Die Grundidee einer Template-Analyse

Die Schritte zur Messung

- Simulation von Verteilungen von Schätzfunktionen einer physikalischen Observablen als Funktion eines angenommen Wertes dieser Observablen
 Templates der Monte Carlo Erwartung.
- Anpassung der Templates mit Funktionen deren Parameter, z.B. $G(\mu, \sigma)$ mit $\mu = \mu_0 + m_{top} \cdot \mu_1$, linear von m_{top} abhängen = Templatefit.
- Likelihood Anpassung der Daten durch die Template-Fitfunktion nur durch Variation des Wertes der Observablen ⇒ Der zentrale Messwert und die statistische Unsicherheit.
- Wiederholung der Anpassung nach Variation systematischer Effekte in den Templates, unter Nutzung der originalen Template-Fitfunktion.
 - ⇒ Die Größe der systematischen Unsicherheit.

Diese Methode nutzt die gesamte Information der gemessenen Verteilung.

Messung im Jets Kanal

Die R₃₂ Verteilung

Das Ergebnis

 $-m_{\rm top} = 173.72 \pm 0.55$ (stat) ± 1.01 (syst) GeV.

- Wichtigste systematische Unsicherheiten: JES (0.60 GeV) bJES (0.34 GeV) und Hadronisierung (0.64 GeV).

Der Zerfallskanal mit der größten Messunsicherheit.

Details zur Analyse

 Die Anzahl der b-tagged Jets und ΔΦ(b, W) in der Signal- und in drei Kontrollregionen wird genutzt um die Form der Untergrundverteilung aus den Daten zu bestimmen.

- Die $R_{32} = \frac{m_{jjj}}{m_{jj}} = \frac{m_{bqq}}{m_{qq}}$ Verteilung mit Erwartung: $\frac{172.5}{80} = 2.16$ stabilisiert m_{top} gegen eine globale Jetenergie

Unsicherheit.

Top-Quark Masse

The Liste der systematischen Unsicherheiten

	$t\bar{t} \rightarrow le$	pton+jets	
	$m_{top}^{\ell+jets}$ [GeV]	JSF	bJSF
Results	172.33	1.019	1.003
Statistics	0.75	0.003	0.008
- Stat. comp. (m _{top})	0.23	n/a	n/a
– Stat. comp. (JSF)	0.25	0.003	n/a
- Stat. comp. (bJSF)	0.67	0.000	0.008
Method	0.11 ± 0.10	0.001	0.001
Signal MC	0.22 ± 0.21	0.004	0.002
Hadronisation	0.18 ± 0.12	0.007	0.013
ISR/FSR	0.32 ± 0.06	0.017	0.007
Underlying event	0.15 ± 0.07	0.001	0.003
Colour reconnection	0.11 ± 0.07	0.001	0.002
PDF	0.25 ± 0.00	0.001	0.002
W/Z+jets norm	0.02 ± 0.00	0.000	0.000
W/Z+jets shape	0.29 ± 0.00	0.000	0.004
NP/fake-lepton norm.	0.10 ± 0.00	0.000	0.001
NP/fake-lepton shape	0.05 ± 0.00	0.000	0.001
Jet energy scale	0.58 ± 0.11	0.018	0.009
b-Jet energy scale	0.06 ± 0.03	0.000	0.010
Jet resolution	0.22 ± 0.11	0.007	0.001
Jet efficiency	0.12 ± 0.00	0.000	0.002
Jet vertex fraction	0.01 ± 0.00	0.000	0.000
b-Tagging	0.50 ± 0.00	0.001	0.007
E_{T}^{miss}	0.15 ± 0.04	0.000	0.001
Leptons	0.04 ± 0.00	0.001	0.001
Pile-up	0.02 ± 0.01	0.000	0.000
Total	1.27 ± 0.33	0.027	0.024
	Results Statistics - Stat. comp. (map) - Stat. comp. (JSF) - Stat. comp. (JSF) - Stat. comp. (bJSF) Method Signal MC Hadronisation ISR/FSR Underlying event Colour reconnection PDF W/Z+jets norm W/Z+jets	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Eur. Phys. J. C75 (2015) 330

- Die dritte Dimension reduziert die **bJES induzierte** Unsicherheit in *m*top von 0.88 auf 0.67 = $\sqrt{0.06^2 + 0.67^2}$, ABER sie ist nun im wesentlichen statistisch!
- Als Nebeneffekt reduziert dies einige MC-Model Unsicherheiten. Das liegt daran, dass ein anderer bJSF MC Unterschiede besser beschreibt als eine andere Top-Quark Masse.
- Leider gleichen MC-Model Unsicherheiten oft einer schwarzen Kiste, die Anderungen in *m*_{top} sind schwer vorhersehbar, man muss Vieles ausprobieren.
- Am Ende sind die verschiedenen MC-Model Unsicherheiten ähnlich gross.
- Der Messfehler ist dadurch wieder von der JES induzierten Unsicherheit dominiert.

In diesem Kanal hat die bJES induziere Unsicherheit ihren Schrecken verloren.

Optimierung zum Erreichen der kleinsten Unsicherheit in m_{top}

- Die Variable $p_{T,\ell b}$ bezeichnet den mittleren transversalen Impuls der beiden Lepton-*b*-Jet Paare.
- Die Verteilungen enthalten nur statistische Unsicherheiten.
- Mit $p_{T,\ell b} > 120 \text{ GeV}$ ergibt sich die kleinste Unsicherheit in $m_{top} \Rightarrow$ endgültige Selektion.

Diese Optimierung reduziert die totale Unsicherheit signifikant.

Die Likelihood Anpassung an die Daten

- Die Likelihood Anpassung ergibt $m_{\rm top} =$ 172.99 \pm 0.41 (stat) GeV.
- Der Untergrund (grau) ist verschwindend gering.
- Das blaue Band um die angepasste Funktion zeigt die totale Unsicherheit in *m*_{top} an.
- Die Form der Likelihood um das Minumum ist parabolisch.

Die beobachtete $m_{\ell b}^{\rm reco}$ Verteilung wird von der Anpassung gut beschrieben

Vom Wiegen schwerer Jungs - die Bestimmung ...

5 Top-Qua

hysik Top

Top-Quark Masse

The Liste der systematischen Unsicherheiten

	$\sqrt{s} = 7$	TeV	$\sqrt{s} = 8 \text{ TeV}$
	$m_{top}^{\ell+jets}$ [GeV]	m _{top} ^{dil} [GeV]	mtil [GeV]
Results	172.33	173.79	172.99
Statistics	0.75	0.54	0.41
Method	0.11 ± 0.10	0.09 ± 0.07	0.05 ± 0.07
Signal Monte Carlo generator	0.22 ± 0.21	0.26 ± 0.16	0.09 ± 0.14
Hadronisation	0.18 ± 0.12	0.53 ± 0.09	0.22 ± 0.08
Initial and Final State QCD Radiation	0.32 ± 0.06	0.47 ± 0.05	0.23 ± 0.05
Underlying Event	0.15 ± 0.07	0.05 ± 0.05	0.10 ± 0.11
Colour Reconnection	0.11 ± 0.07	0.14 ± 0.05	0.03 ± 0.11
Parton Distribution Function	0.25 ± 0.00	0.11 ± 0.00	0.05 ± 0.00
Background normalisation	0.10 ± 0.00	0.04 ± 0.00	0.03 ± 0.00
W/Z+jets shape	0.29 ± 0.00	0.00 ± 0.00	0
Fake leptons shape	0.05 ± 0.00	0.01 ± 0.00	0.08 ± 0.00
Jet Energy Scale	0.58 ± 0.11	0.75 ± 0.08	0.54 ± 0.04
relative b-to-light-Jet Energy Scale	0.06 ± 0.03	0.68 ± 0.02	0.30 ± 0.01
Jet Energy Resolution	0.22 ± 0.11	0.19 ± 0.04	0.09 ± 0.03
Jet Reconstruction Efficiency	0.12 ± 0.00	0.07 ± 0.00	0.01 ± 0.00
Jet Vertex Fraction	0.01 ± 0.00	0.00 ± 0.00	0.02 ± 0.00
b-tagging	0.50 ± 0.00	0.07 ± 0.00	0.03 ± 0.02
Leptons	0.04 ± 0.00	0.13 ± 0.00	0.14 ± 0.00
E _T ^{miss}	0.15 ± 0.04	0.04 ± 0.03	0.01 ± 0.01
Pile-up	0.02 ± 0.01	0.01 ± 0.00	0.05 ± 0.01
Total systematics	1.03 ± 0.31	1.31 ± 0.23	0.74 ± 0.25
Total	1.27 ± 0.33	1.41 ± 0.24	0.84 ± 0.25

- Die systematischen Unsicherheiten werden mit Pseudo-Experimenten aus Paaren von Datensätzen bestimmt. Sie werden mit ihren statistischen Unsicherheiten, unter Berücksichtigung der statistischen Korrelation, angegeben. Diese statistischen Unsicherheiten erlauben die Bestimmung der numerischen Stabilität der Kombination. Die Korrelationen der Schätzwerte f
 ür alle Quellen systematischer Unsicherheit werden berechnet und nicht (wie sonst üblich) zugewiesen.
- Die größten experimentellen Unsicherheiten kommen von den Jetenergie Skalen, die größten Modell Unsicherheiten von der Hadronisation und von ISR/FSR.

7 TeV: Eur. Phys. J. C75 (2015) 330

8 TeV: Phys. Lett. B761 (2016) 350

Dieses Resultat aus den 8 TeV Daten ist die präziseste Messung von mtop in diesem Kanal.

Vom Wiegen schwerer Jungs - die Bestimmung

Richard Nisius (MPP München)

Einführung LHC ATLAS Top-Quark Physik Top-Quark Masse Kombination Zusammenfassung Backup

Die bedingte Wahrscheinlichkeit = die zugrunde liegende Wahrheit

Vom Wiegen schwerer Jungs - die Bestimmung ...

Die zu lösende Aufgabe

Die Eingangsgrößen

- Einige erwartungstreue, aber korrelierte Schätzwerte x_i für den wahren Wert x_T .

Kombination korrelierter Schätzwerte

- Bestimme einen optimalen, erwartungstreuen Schätzwert x von x_T aus den x_j.
- Eine Lösung: BLUE = Best Linear Unbiased Estimator (Bester Linearer Erwar-B: σ_x^2 ist die kleinst mögliche Varianz. L: $x = \vec{\alpha} \cdot \vec{x} = \sum \alpha_j \cdot x_j$ mit $\sum \alpha_j = 1$. UE: $\langle x \rangle = x_T$.

Punkte zum Merken

$$- \overline{\mathsf{BLUE}} \equiv \operatorname{mimimiere} \chi^2 = \left[\begin{pmatrix} x \\ x \\ x \end{pmatrix} - \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right]^2 V^{-1}(\vec{x}) \left[\begin{pmatrix} x \\ x \\ x \end{pmatrix} - \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \right]$$

- $-\sigma_x \neq f(x_j)$ und $\alpha_j \neq f(x_j)$ nur $x = f(x_j)$.
- Ein gegebenes x_j ist nur ein mögliches Resultat = Schätzwert der PDF. Es kann wahrscheinlich oder unwahrscheinlich sein und x_T kann in Bezug auf x_j überall liegen.

BLUE ist eine einfache, transparente und richtige Methode für diese Aufgabe.

Möglicher Gewinn und relative Wichtigkeit von Schätzwerten

- Der einfachste Fall zweier Schätzwerte (x_1, x_2) einer Observablen (x_T) sagt fast Alles.

Kombination

- Das Verhältnis der Unsicherheiten sei $z = \frac{\sigma_2}{\sigma_1} > 1$, und die Korrelation $-1 \le \rho \le 1$. - Kombination: $x = (1 - \beta) x_1 + \beta x_2$, mit $\sigma_x^2 = Min$.

Der Koefficient β ist der Abstand von x von x_1 in Einheiten von $x_2 - x_1$

Vom Wiegen schwerer Jungs - die Bestimmung ...

Top-Quai

sik Top-Q

p-Quark Masse

Ein paar Worte zur Korrelation von Schätzwerten per Unsicherheit

System. Unsicherh

- Möchte seine Goldsäcke wiegen, $\langle x_i \rangle = 10$ kg. - Er hat zwei Waagen mit $\sigma(\mu_1) = 0.4$ g bzw. $\sigma(\mu_2) = 0.6$ g bei 4000 Messungen. - Jemand muss diese Arbeit tun!

Ich nehme immer 4 g von (1) weg und tu sie auf (2). $\Rightarrow \rho = -1$ Nominal $\Leftrightarrow x_i$ Ich nehme immer 2 g von (1) weg aber 4 g von (2). $\Rightarrow \rho = +1$ Variiert $\Leftrightarrow \bar{x}_i$.Ich nehme immer 1 g von (1) und von (2) weg. $\Rightarrow \rho = +1$ (aber häufig $\rho = -1$)

– Die Größe einer Unsicherheit sagt rein gar nichts über die Korrelation der Schätzwerte.

– Die statistische Präzision und Korrelation der Pseudo-Experimente bestimmt $\sigma(\mu_i)$.

Die Bestimmung der Korrelation ist wichtig zur richtigen Durchführung der Kombination.

Die Korrelation der Schätzwerte für individelle Quellen

- Jeder Punkt symbolisiert eine (Sub-) Komponente mit $\rho = 1$ or $\rho = -1$. bJES: 0.30 ± 0.01 (Dil, 8), 0.68 ± 0.02 (Dil, 7, $\rho = 1$), 0.06 ± 0.03 (Lep. + Jets, 7, $\rho = 1$). ISR/FSR: 0.23 ± 0.07 (Dil, 8), 0.47 ± 0.05 (Dil, 7, $\rho = 1$), 0.32 ± 0.06 (Lep. + Jets 7, $\rho = -1$).

 Für nicht signifikante Unsicherheiten wechselt das Vorzeichen der Korrelation bei Variation der Unsicherheiten innerhalb ihrer Pr\u00e4zision beim Test der Stabilit\u00e4t der Kombination.

Durch das Design der Analyse ist die Korrelation zur Lepton + Jets Analyse viel kleiner.

Vom Wiegen schwerer Jungs - die Bestimmung

Top-Quark Masse

Kombination - Dilepton Kanal 8 TeV mit Lepton + Jets Kanal 7 TeV

- Große Verbesserung im Vergleich zum präziseren Resultat, da die Korrelation der Messungen klein ist, $\rho = 0.00 \ll \frac{0.84}{1.27} = 0.66 \Leftrightarrow$ der Punkt keiner Verbesserung.

Die Nutzung der 3-dim Analyse zusammen mit der 1-dim Analyse zahlt sich aus.

Einführung LHC ATLAS Top-Quark Physik Top-Quark Masse Kombination Zusammenfassung Backup

Passt das Klavier in die Nische?

- − Das Klavier s\u00e4h in der Nische sch\u00f6n aus. Sieht eng aus und Klaviertransporte sind teuer ⇒ Besser mal messen!
- Mein Elle (bis zu welchem Finger?) ist ca. 48 cm lang. Die Breite ist 3 Ellen also: $B_1 = 144 \pm 3$ cm.
- Gut genug? Ich hab doch ein A4-Blatt, 29.7 · 21.0 cm². Die Breite ist 4L+B also: $B_2 = 139.8 \pm 1.5$ cm.
- Gut genug? lch hab doch ein Geodreieck, L = 14 cm. Die Breite ist 10L+1.4 cm. Besser fünf mal messen,
- und die Breite ist: $B_3 = 141.7 \pm 0.2 \pm 0.5$ cm.
- Gut genug? Wo ist der Zollstock? Fünf mal messen, und die Breite ist: $B_4 = 142.2 \pm 0.2 \pm 0.1$ cm.
- Was nun? Sind wirklich alle Messungen wichtig?
- Ah, einige sind wohl eher eine Gegenprobe. Mist, dass ich die Länge meiner Elle errinnerte, war doch so super, und wer kennt schon die A4 Maße auswendig, wie cool.
- Wie sehr man auch an seinen Resultaten hängt …

... man sollte nur signifikante Messungen kombinieren.

Signifikante Messungen verbessern die Kombination, Gegenproben das Vertrauen.

Vom Wiegen schwerer Jungs - die Bestimmung

Top-Quark Ph

Top-Quark Masse

Ein Beispiel aus 2013

Die Tevatron Kombination

Die Kombination signifikanter Messungen

Die Resultate spannen 15 Jahre (1997–2012). Das Verhältnis der Fehler ist bis zu 11.5!

 Zur Kombination müssen die Korrelationen der Messungen f
ür alle systematischen Unsicherheiten gut bekannt sein. Nach 15 Jahren Entwicklung wohl eher unmöglich.

Das traurige Schicksal von Messungen – Von der Weltneuheit zur Gegenprobe.

Top-Quark

hysik Toj

Top-Quark Masse

Die Entwicklung der ATLAS *m*_{top} Messungen

- Eine Reihe von Messungen hat nach wenigen Jahren nur noch historischen Wert.

Ein kontinuierlicher Weg von 6.3 ${\rm GeV}$ zu 0.8 ${\rm GeV}$ Unsicherheit in der Einzelmessung.

Vom Wiegen schwerer Jungs - die Bestimmung ...

Einführung LHC ATLAS Top-Quark Physik Top-Quark Masse Kombination Zusammenfassung Backup

Zusammenfassung

- Die Top-Quark Masse wurde in allen Zerfallskanälen von Top-Quark Paaren bestimmt.
- Die ATLAS Top-Quark Masse ist: $m_{\rm top} =$ 172.84 \pm 0.34 (stat) \pm 0.61 (syst) GeV.
- Die Kombinationen von Messungen (auch der Top-Quark Masse) muss mit Sorgfalt durchgeführt werden. Die Planung von nur wenig-korrelierten Messungen ist ratsam.
- Der Einschluss aller Messungen in die Kombinationen ist nicht zielf
 ührend. Einige Messungen sind mittlerweile von einer Weltneuheit zur Gegenprobe transformiert.
- Das nächste ATLAS Ziel ist ein Einzelfehler kleiner als 0.5 GeV.

Vielen Dank für Ihre Aufmerksamkeit.

Backup - Folien

Einführung LHC ATLAS Top-Quark Physik Top-Quark Masse Kombination Zusa

Die elementaren Materiebausteine

- Unser heutiges Bild der Rezeptur

der Natur, ist:

Backup

- Es gibt drei Familien von Leptonen und Quarks.
- Sie sind Fermionen (Spin = 1/2) und nur die erste Familie bildet stabile Materie, p = uud und n = udd.
- Zu jedem Teilchen gibt es ein Antiteilchen mit umgekehrten Ladungen aber sonst identischen Eigenschaften.
- Die Massen sind sehr verschieden und niemand weiß warum. Die Massen reichen von weniger als 1 eV für das ν_e bis zu 173 GeV (etwa 185 Protonmassen) für das schwerste Quark, das Top-Quark.
- Die Theorie zur Erklärung der Massen ist der Higgs Mechanismus. Das erforderliche Teilchen, das Higgs-Boson, wurde kürzlich am LHC gefunden.

Das Spektrum der Teilchenmassen ist extrem groß.

	ATLAS			Backup

Die fundamentalen Kräfte

	Wechsel- wirkung	Beispiel	Boson	Masse [GeV]	el. La- dung [e]	rel. Stärke (Reichweite)
	Gravitation	Erdan- ziehung	Graviton? G ?	0	0	10 ^{−38} (∞)
?? chwach	schwach	Kernzerfall	z W±	91.2 80.4	0 ±1	10 ^{—5} (10 ^{—3}) fm
dmodell elektro-s	elektro- magnetisch	Coulomb- anziehung	Photon γ	0	0	10 ^{−2} (∞)
Standar	stark	Quark- Einschluss	Gluon g	0	0	1 (1 fm)

Außer für die Gravitation haben wir eine vereinheitlichte mathematische Beschreibung.

Vom Wiegen schwerer Jungs - die Bestimmung ...

Richard Nisius (MPP München)

Wechselwirkungen im Standardmodell

 e^+

 e^+e^-

Das mathematische Konzept

- Eine Kombination von Eichgruppen: $U(1)_{\rm Y} \times SU(2)_{\rm L} \times SU(3)_{\rm C}$ mit

lokaler Eichinvarianz und drei laufenden Kopplungskonstanten, eine für

jede Eichgruppe:
$$\alpha_1 = \frac{5}{3} \left(\frac{e}{\cos \theta_W}\right)^2$$
, $\alpha_2 = \left(\frac{e}{\sin \theta_W}\right)^2$ und $\alpha_3 = \alpha_s$.

Zur Beschreibung der Wechselwirkungen genügen vier fundamentale Vertizes.

Emission und Absorption

Einführung LHC

6 Top-Qi

k Physik

Top-Quark Masse

Mit dem Large Hadron Collider (LHC) in Richtung Urknall

Vom Wiegen schwerer Jungs - die Bestimmung

Richard Nisius (MPP München)

Wuppertal, 26. Juni 2017 34 /41

nführung LHC A

AS Top-

ark Physik

Top-Quark Masse

Das Bauprinzip von Teilchendetektoren

Das Prinzip

- In einer Art Zwiebelschalendesign um die Strahlröhre werden die verschiedenen Teilchen an Hand ihrer typischen Wechselwirkungen nachgewiesen.
- Die Messgrößen sind Ort, Impuls, Ladung, Energie...
- Bei komplizierten Zerfällen wird aus der Summe aller Zerfallsprodukte auf die Eigenschaften der primär erzeugten Teilchen geschlossen.
- Datenmenge einer 100 Megapixel Kamera mit 40 Millionen Schnappschussmöglichkeiten pro Sekunde.
- Ein 3-stufiger Entscheidungsprozess bringt uns von

40 MHz \rightarrow $\boxed{2}$, $\boxed{1}$, $\boxed{1}$, 300 Hz.

- Die jährliche Rohdatenmenge: 1000

Bau und Betrieb von Teilchendetektoren sind sehr komplexe Aufgaben.

Vom Wiegen schwerer Jungs - die Bestimmung ...

Richard Nisius (MPP München)

à 2 TR

Der dileptonische Kanal - Ereignis Vorselektion

Vorselektion in 8 TeV Daten

- Nutze
$$W^+W^- \rightarrow \ell^+\ell^-\nu\bar{\nu}$$
 mit $\ell = e, \mu$.

- Gute Datenqualität \Rightarrow 20.2 \pm 0.4 fb⁻¹.
- Trigger und primärer Vertex mit \geq 5 Spuren.
- Elektronen: \textit{E}_{T} > 25 GeV, $|\eta|$ < 2.47.
- Myonen: $p_{
 m t}$ > 25 GeV, $|\eta|$ < 2.5.
- ee, $\mu\mu$ Kanal: $E_{
 m T}^{
 m miss}$ > 60 GeV $m_{\ell\ell}$ > 15 GeV, $|m_{\ell\ell} M_{7^0}|$ > 10 GeV.
- e μ Kanal: H $_{
 m T}$ > 130 GeV.
- Mindestens zwei Jets mit $p_{
 m t} >$ 25 GeV und $|\eta^{
 m jet}| <$ 2.5.
- Mindestens ein *b*-tagged Jet ($\epsilon_b = 70\%$).
- Die Produktion einzelner Top-Quarks wird zum Signal hinzugerechnet, wodurch der Untergrund von m_{top} unabhängig wird.

Diese Vorselektion ergibt 36 Tausend Ereignisse mit etwa 1% Untergrund.

Top-Quark

Top-Quar

uark Masse

Die Signal Templates und die $m_{\ell b}^{\text{reco}}$ Verteilung

- Das Signal besteht zu 96.4% aus t \overline{t} und zu 3.6% aus Ereignissen mit einzelnen Top-Quarks.
- Die Schätzfunktion ist erwartungstreu ⇔ Pull Verteilung mit Mittelwert Null, Breite Eins.
- Die m_{top} Sensitivität ergibt $\sigma_{m_{\text{top}}}(\text{stat}) = 0.41 \text{ GeV}$ für 20.2 fb⁻¹.
- Die Daten werden von der Verhersage mit $m_{top} = 172.5$ GeV gut beschrieben.

Diese Übereinstimmung weist auf eine ähnliche Top-Quark Masse in den Daten hin.

Einführung LHC ATLAS Top-Quark Physik Top-Quark Masse Kombination Zusammenfassung Baokup

Warum Korrelationen so wichtig sind

- Die Reduktion der Schätzwert Korrelation von 30 (57)% ist so gut wie die Reduktion der Unsicherheit des weniger genauen Schätzwerts x_2 von 30% (einem Faktor 2), aber oft viel einfacher.

 Da die Korrelationen ρ_i so wichtig sind, sollten sie f
ür alle Quellen i bestimmt und nicht zugewiesen werden.

- Beispiel: Kombination der 7 TeV Resultate: $^{
m
ho}$

(1) $m_{\text{top}} = 172.91 \pm 0.50 \text{ (stat)} \pm 1.05 \text{ (syst)}$ GeV, für $\rho = +0.51$ (bei Zuweisung von ρ_i). (2) $m_{\text{top}} = 172.99 \pm 0.48 \text{ (stat)} \pm 0.78 \text{ (syst)}$ GeV, für $\rho = -0.07$ (bei Bestimmung der ρ_i). - Für z = 1.11 ist m_{top} aus (2) 26% präziser als m_{top} aus (1).

Im Zweifel sollte man immer für eine Reduktion der Korrelation der Schätzwerte entscheiden.

Top-Quark Phys

Top-Quark Masse

Die Konsistenz des Standardmodells

Präzionsmessungen und das Standardmodell

Die Kombination von *m*top

m_w [GeV] ATLAS Preliminary mtoo summary - May 2017, L__ = 4.6 fb⁻¹ - 20.3 fb⁻¹ ATLAS m_w = 80.370 ± 0.019 GeV 80.5 m, = 172.84 ± 0.70 GeV Bur. Phys. J. C78 (2018) 188 L_++ 6.619⁴ ± 1.8 (14 all iets ····· m_H = 125.09 ± 0.24 GeV 172.2 ± 2.1 (0.1 single top* conrected 68/95% CL of m_w and m 80.45 1738 + 14 (0) 1720 + 0.8 / 0.4 + 07) 80.4 all jots any incorrect 173.7 ± 1.2 (0.6 o(tt) dilepton (L =6.0203 b) 172.9 ± 25 80.35 173.7 ± 23 ATLAS Comb. ± 1 σ 68/95% CL of Electroweak 80.3 ATLAS Comb. June 2016 Phys. Les Mill (2016) 38 @ ISE @ h ISE uncertainty Fit w/o m_w and m uncertainty ninary, -Input to comb (Eur. Phys. J. C 74 (2014) 3046) 80.25 165 170 175 185 m_{top} [GeVI 180 165 170 175 185 180 m.[GeV]

- Die Kombination dreier ATLAS Messungen hat eine totale Unsicherheit von 0.7 GeV (0.4%).

- Die gute Beschreibung der präzisen Messungen von $m_{\rm W}$ mit $\sigma(m_{\rm W}) = 0.02\%$, $m_{\rm top}$ mit $\sigma(m_{\rm top}) = 0.4\%$ und $M_{\rm H}$ (vom LHC) mit $\sigma(M_{\rm H}) = 0.2\%$ ist ein Erfolg des Standardmodells.

Das Standardmodell hält unseren Präzisionstests weiterhin erfolgreich Stand.

Die genauesten CMS Resultate

Der Jets Kanal

 $m_{\rm top} = 172.32 \pm 0.25 \, ({\rm stat}) \pm 0.59 \, ({\rm syst}) \, {\rm GeV}$

 $m_{\rm top} = 172.35 \pm 0.16 \, ({\rm stat}) \pm 0.48 \, ({\rm syst}) \, {\rm GeV}$

Der Lepton + Jets Kanal

Die Messung im Lepton + Jets ist zur Zeit diejenige mit der kleinsten Unsicherheit.

Einführung LHC

S Top-C

< Physik

Top-Quark Masse

Die Resultate von CMS und ihre Kombination

_	Res	ultat d	ominie	rt von:			
	1)	2012	lepto	n+jet	73%		
	2)	2012	al	I-jets	17%		
	3)	2011	dile	pton	7%		
	der Rest trägt weniger als +3% bei.						
	— Die Korrelationen sind:						
	1)	1.00	0.61	0.21			
	2)		1.00	0.20			
	3)			1.00			
	 Die Verhältnisse der 						
Unsicherheiten sind:							
	$z_{12} = 1.27, z_{13} = 2.26.$						
	\Rightarrow Nur eine 4% Verbesserung gegen-						

über dem präzisesten Schätzwert!

Die Korrelationen der CMS Messungen sind weniger vorteilhaft als die von ATLAS.

Vom Wiegen schwerer Jungs - die Bestimmung

Richard Nisius (MPP München)