Radiation hardness of thin high resistivity FZ silicon detectors in comparison to epitaxial silicon devices

E. Fretwurst(a), L. Andricek(c), F. Hönniger(a), G. Kramberger(b) G. Lindström(a), G. Lutz(c), M. Reiche(d), R.H. Richter(c), A. Schramm(a)

^(a) Institute for Experimental Physics, Univ. of Hamburg
 ^(b) Jozef Stefan Institute, Univ. Ljubljana
 ^(c) MPI of Physics, Semiconductor Detector Laboratory, Munich
 ^(d) MPI of Microstructure Physics, Halle

- MPI device process technology
- Irradiation experiments
- First results on macroscopic properties
- Further investigations

MPI Device Process Technology

L. Andricek, MPI

MPI chips after thinning process

L. Andricek, MPI

Typical C/V and I/V characteristics of MPI chips 50 μm, type I diode, 10 mm²

EPI – Silicon: Resistivity and Impurity Profiles

- EPI-layer: n-type, P doped
 between 0-40 μm: 54.8 ± 2.1 Ωcm
 after device process: 62.9 ± 2.8 Ωcm
 Thickness: 49.5 ± 1.6 μm
- Substrate: n-type, Sb doped, <111> ρ = 0.015 Ωcm Thickness: 320 μm

- Oxygen diffusion from Cz-substrate into epilayer
 - <[O]> \approx 9×10¹⁶ cm⁻³ in epi-layer
- Carbon concentration near detection limit
 <[C]> ≈ 9×10¹⁵ cm⁻³

Irradiation Experiment

- CERN PS irradiation period 2003
- Beam energy 20 GeV
- Fluence range: 10¹⁴ up to 10¹⁶ p/cm²
- Multiple exposures in different runs

Typical I/V and C/V characteristics after irradiation

C/V presented in serial mode Frequency: 10 kHz I/V measured with guard ring connected to ground, T≈ 21 °C

Annealing of ΔN_{eff} at 80°C

Standard parameterization: $\Delta N_{eff} = N_A(\Phi,T,t) + N_C(\Phi) + N_Y(\Phi,T,t)$

- Minimum of annealing curve shifts for high fluences to larger annealing times
- Short term annealing component strongly suppressed in case of long exposures
- Time constant of long term annealing component (reverse annealing) increases with increasing fluence
- Stable damage component N_C and reverse annealing amplitude N_{Y,inf} increases with increasing fluence

N_{eff} at 80°C for 8 min and stable damage component N_{C} 20 GeV/c protons, fixed fluence values

• Type inversion for all fluence values achieved ($\Phi_{min} = 9.5 \times 10^{13} \text{ p/cm}^2$)

• $N_{eff}(\Phi) = N_{eff,0} \times exp(-c \times \Phi) + \beta_{eff} \times \Phi$, $\beta_{eff} = \beta_{acceptor} - \beta_{donor}$

 $\beta_{eff}=3.6\times10^{-3}\ cm^{-1}$, comparable with DOFZ $g_C=2.9\times10^{-3}\ cm^{-1}$

Reverse annealing amplitude N_Y 20 GeV/c protons, fixed fluence values

- Reverse annealing amplitude shows saturation effect at very high fluences like DOFZ silicon
- $N_{Y}(\Phi) = N_{Y,inf} \times \{1 \exp(-c_{y} \times \Phi)\}; c_{y} = 1.87 \times 10^{-16} \text{ cm}^{2}, N_{Y,inf} = 1.67 \times 10^{14} \text{ cm}^{-3}$

Reverse current annealing at 80°C

- Time dependence of I_{rev} annealing quite similar for all fluences
- Short term annealing region: at high fluences short term annealing amplitude suppressed
- Long term annealing region: time dependence independent of fluence

Parameterization:

$$\begin{split} I(V_{fd})/V(\Phi,T,t) &= \alpha(T,t) \times \Phi = a_I(\Phi,T) \times exp(-t/\tau_I) + \{a_0(\Phi,T) - b(\Phi,T) \times ln(t/t_0)\} \\ short \ term \ annealing \ + \ long \ term \ component \end{split}$$

Reverse current after annealing at 80°C for 8 min

• Parameterization: $I(V_{fd})/V = \alpha(T=80^{\circ}C, t=8min) \times \Phi$

 $\alpha = 2.43 \times 10^{-17} \text{ A/cm} \rightarrow \alpha_{eq} = 3.91 \times 10^{-17} \text{ A/cm} (1 \text{ MeV neutron eq.})$

Reverse current annealing parameter

Parameter a₀ and b: linear dependent on fluence Corresponding normalized values:

 $\begin{array}{rcl} \alpha_0 = a_0/\Phi = 2.6 \times 10^{-17} \text{ A/cm} & \rightarrow & \alpha_{0,eq} = 4.2 \times 10^{-17} \text{ A/cm} \\ \beta = & b/\Phi = 0.13 \times 10^{-17} \text{ A/cm} & \rightarrow & \beta_{eq} = 0.21 \times 10^{-17} \text{ A/cm} \end{array}$

Annealing behavior of V_{fd} MPI-chip in comparison with EPI device

- MPI chip: short term decrease, long term increase → type inverted
- EPI device: short term increase, long term decrease → not type inverted

Fluence dependence of V_{fd} for MPI-chips and EPI devices Annealed at 80°C for 8 min

Effective introduction rates at high fluences:

for MPI: $\beta_{eff} = 0.0036 \text{ cm}^{-1}$, type inverted, β value comparable with DOFZ-Si for EPI: $\beta_{eff} = 0.0084 \text{ cm}^{-1}$, not type inverted, shallow donor creation

FURTHER INVESTIGATIONS

- <u>Studies on Charge Collection Efficiency (CCE)</u>
 Understanding of trapping effects at very high damage levels
- Studies on possible non-uniformities in thin FZ and EPI-silicon Space charge density (shallow n-type layer at the p-n junction), Thermal donor profile, is hydrogen involved? What is the reason for the time shift in the reverse annealing?

Microscopic studies:

Understanding of radiation induced generation of shallow donors (type of TD's) and deep acceptors responsible for detector performance Correlation of trapping with defects

Next steps:

Irradiation and investigation of $25\mu m \& 75\mu m$ thick 50 Ωcm EPI-layers Processing and investigation of $50\mu m$ EPI-layer on low resistivity FZ-Si

