Inner Detector Alignment at the MPI

Jochen Schieck

Max-Planck-Institut für Physik

•Required Precision for Physics Analysis

 Inner Detector Alignment Activities and future Plans at the MPI

•Other Alignment Activities within ATLAS

Requirements from Tracking

- alignment requirements
 - degradation of tracking
 resolution less than 20%
 - Pixel: $7\mu m$ in $r\Phi$
 - SCT: 12 μ m in r Φ
 - TRT: 30 μ m in r Φ

(W-mass measurement to 25 MeV requires 1µm alignment precision)

19 January 2006

S. Haywood, ATL-INDET-2000-005

B-Tagging Workshop Bonn

Impact of Misalignment on B-tagging

•random misalignment in SCT and Pixel

		$\sigma_{R\phi} = 5 \ \mu \mathrm{m}$ $\sigma_Z = 15 \ \mu \mathrm{m}$	$\sigma_{R\phi} = 10 \ \mu \mathrm{m}$ $\sigma_Z = 30 \ \mu \mathrm{m}$	$\sigma_{R\phi} = 20 \ \mu \mathrm{m}$ $\sigma_Z = 60 \ \mu \mathrm{m}$	
		$\sigma_Z = 15 \ \mu \mathrm{m}$	$\sigma_Z = 30 \; \mu \mathrm{m}$	$\sigma_Z = 60 \ \mu \mathrm{m}$	
$2D R_u/R_0$	$\epsilon_b = 50\%$	0.95	0.89	0.65	
	$\epsilon_b = 60\%$	0.98	0.91	0.74	
$3D R_u/R_0$	$\epsilon_b = 50\%$ $\epsilon_b = 60\%$	0.99	0.91	0.67	
	$\epsilon_b = 60\%$	0.97	0.92	0.71	

S. Corréard et al, ATL-COM-PHYS-2003-049

similar result by S. Gibson estimating the impact of misalignment with reduced tracking performance as seen by CDF
aim for alignment accuracy better than 10µm
light jet reduction reduced by about 10%

Accuracy from Survey

R. Hawkings et al., ATL-INDET-INT-2005-002

alignment precision	SCT Barrel (in μm)	SCT Endcap (in μm)
x	100	50
У	100	50
Z	(500)	(500)

alignment precision	Pixel Barrel (in μm)	Pixel Endcap (in μm)
x	50	20
у	50	20
z	(500)	(500)

"educated guesses"

good initial alignment
for tracking at the
beginning
track based
alignment pecessary

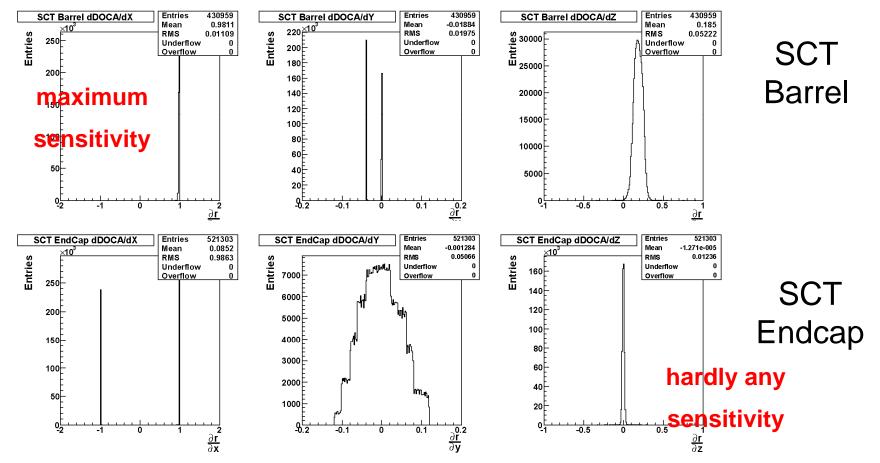
alignment necessary

to reach required

precision

last microns are the toughest

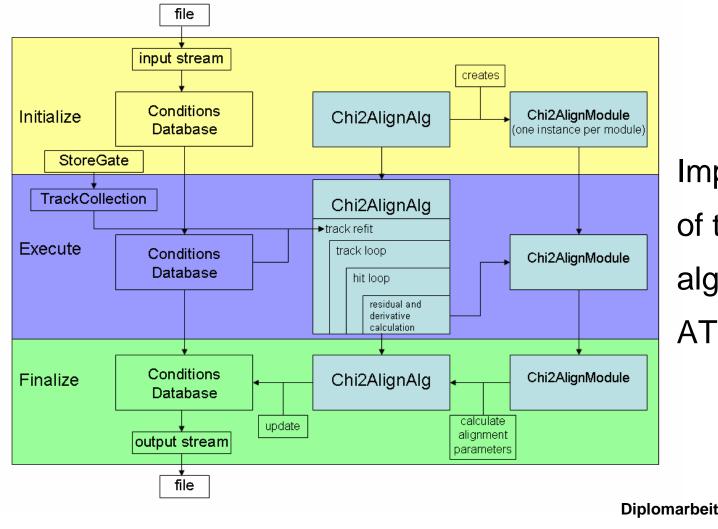
ID Alignment


MPI: Robust local χ^2 Approach

- build $\chi^2 = (DOCA/\sigma)^2$ term using track information
- 3D residuals, geometry completely described
- minimize χ^2 with respect to 6 alignment parameters for each SCT and Pixel module separately
- correlations between modules will be taken into account by iteration input

$$\Delta a_{i} = \left[\sum_{hits} \left(\frac{2}{\sigma^{2}} \frac{\partial r}{\partial a_{j}} \frac{\partial r}{\partial a_{i}} \right) \right]^{-1} \cdot \sum_{hits} \left(\frac{2}{\sigma^{2}} \frac{\partial r}{\partial a_{i}} \right)$$

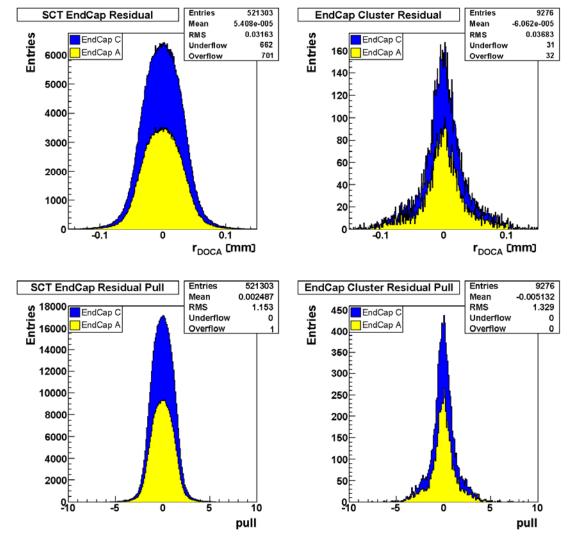
Derivatives of Residuals


derivatives calculated numerically

derivatives reproduces directly sensitivity of local coordinates

19 January 2006

Robust local χ^2 Approach

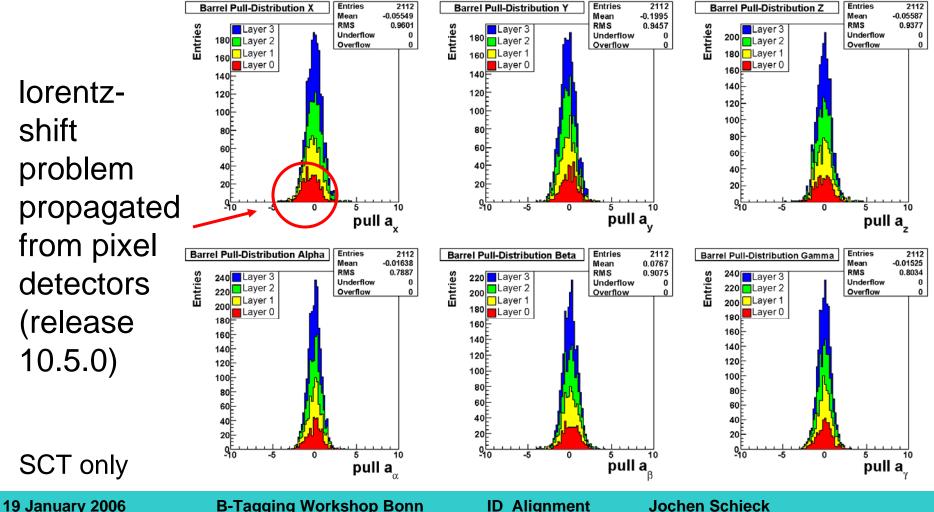


Implementation of the alignment algorithm in **ATHENA**

Alignment Input: Residual

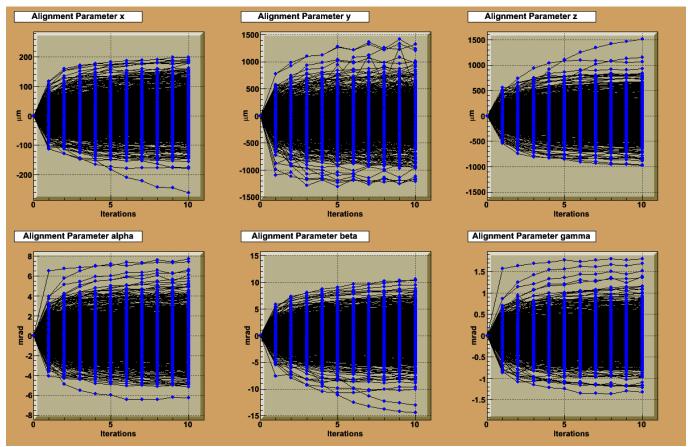
ATHENA

 130k single pion events produced with release 10.3.0, reconstructed with 10.5.0average 250 hits per module (at least 100 hits)


SCT: Diplomarbeit R. Härtel

ID Alignment

Jochen Schieck


Pull of Alignment Constants

1st iteration with perfect initial alignment (null-alignment)

Alignment Parameter flow

perfect initial alignment



•performance and accuracy of local χ^2 algorithm

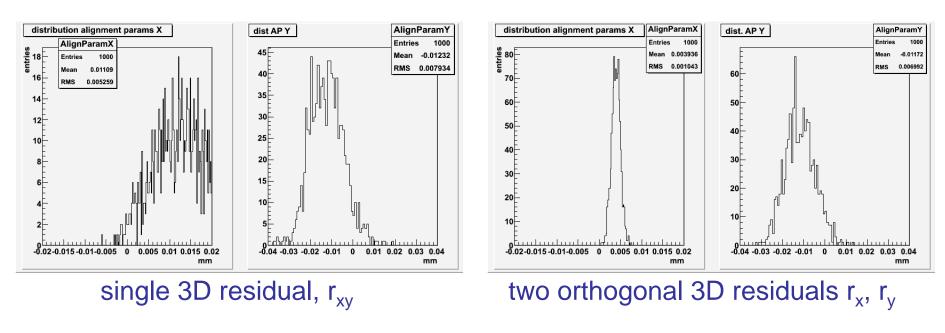
19 January 2006

Alignment of single misplaced module

•Alignment parameter flow through ten iterations

ID Alignment

Alignment Accuracy reached


alignment	SCT Barrel			SCT EndCap					
parameter	68 % CL	O stat	as built	TDR req.	68 % CL	O stat	as built	TDR req.	
ax [μm]	48	29	100	12	19	4.9	50	12	
ay [μm]	253	169	100	50	145	57	50	50	
az[μm]	245	149	500	100	1100	300	500	200	
a_{α} [mrad]	1.5	1.2			21	8.5			
a_{β} [mrad]	2.6	1.8			13	5.0			after 10
a_{γ} [mrad]	0.33	0.25			0.38	0.13			iterations

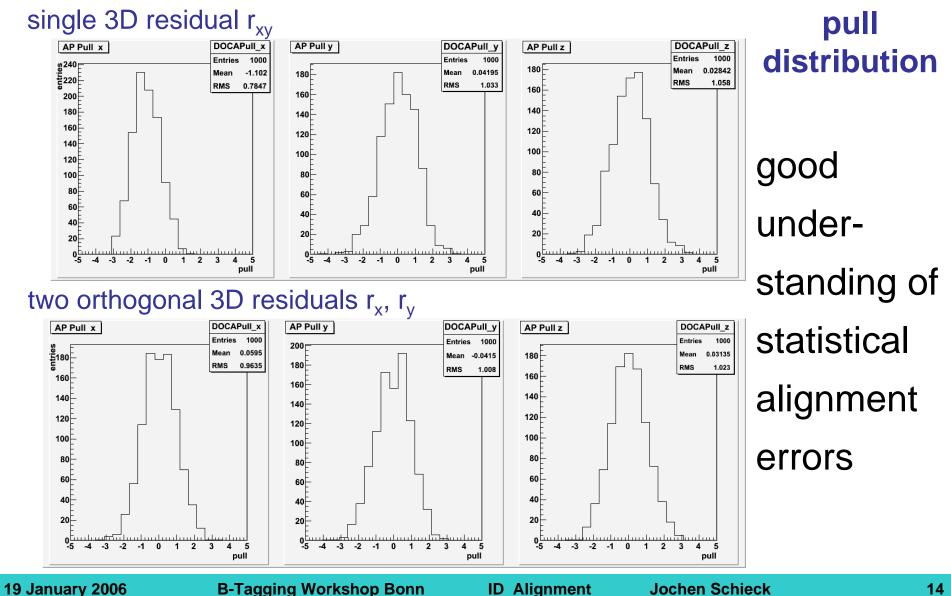
•estimated accuracy for robust χ^2 approach using 130k π tracks and initial perfect alignment •differences between $\sigma_{68\% CL und} \sigma_{stat}$ estimate systematic uncertainty

Alignment of Pixel Modules

Pixel: Diplomarbeit T. Goettfert

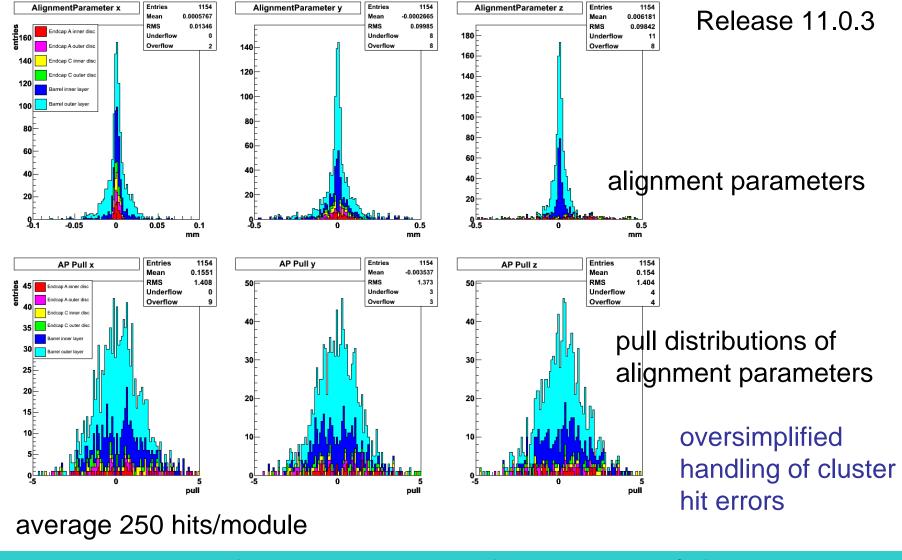
proof of principle using ROOT toy MC
 – r_{xy} residual versus r_x,r_y residuals

•misalignment: x: 4 μ m, y: -12 μ m


•1k samples of 1k tracks

Х

(short)


V

Alignment of Pixel Modules

Alignment of Pixel Modules

ATHENA, null alignment

Future Plans at the MPI

- combined high statistic tests of SCT & Pixel
- understand testbeam data
- understand improve systematic
 - enhance overlap hits, vertex (and mass) constraints, add survey constraints,...
 - "Kalman-Filter-Approach"
 - update detector geometry event-by-event
 - global and local alignment
- studies on track quality and selection cuts

Alignment Activities within ATLAS

- analysis of testbeam data
- preparation for analysis of SR1 cosmics
- global χ^2 approach (Rutherford)
 - takes correlations between modules directly into account
- alignment using overlap hits only (Oxford)
 - aims for robustness
- TRT alignment (Copenhagen)
- usage of survey measurements (LBL)
- Frequency Scanning Interferometer (FSI) (Oxford)

Conclusion

- understanding of alignment crucial for btagging performance
- MPI Munich develops simple robust local χ^2 algorithm within ATHENA framework
 - first results promising
 - works for SCT and Pixel in barrel and endcap
 - future work: algorithm refinement to improve systematic, testbeam analysis, large scale tests, global alignment, track selection
- 3 senior scientists and 4 students