The ATLAS detector

Together with scientists from around the world, physicists at the MPP have developed and constructed the particle detector ATLAS. ATLAS is an experiment at the Large Hadron Collider (LHC), a particle accelerator at the CERN research center in Geneva. The LHC began operating in 2008. In March 2010, the research program got under way at this proton-proton accelerator, working with the highest energies achieved to date at any accelerator facility. With the help of the LHC, researchers from all over the world want to coax out the secrets of the structure of matter and the fundamental forces.

ATLAS records the results of proton-proton collisions produced by the LHC. In the process, conditions similar to those in the extremely early, hot and dense universe shortly after the Big Bang are created. From that, the researchers gain insights about the fundamental building blocks of matter as well as their interactions. They are looking for new phenomena, such as the existence of higher dimensions of space and time and the origin of the dark matter that holds our universe together.

The MPP was and is involved with the development of instruments essential to the ATLAS detector – the inner detector, the calorimeters, and the muon chambers – as well as the setup of the computing system. A major technical upgrade is scheduled to start from 2026. The goal is to increase the number of proton collisions in order to obtain more data. MPP scientists and technicians are working to make ATLAS fit for the coming surge of new data.

30 years of ATLAS

The history of the truly big experiment began on October 1, 1992, when close to 90 research instituitions signed a common letter of intent to build a detector for proton-proton collisions. The Max Planck Institute for Physics was one these, its scientists contributed to the devolopment of major ATLAS components.

The greatest success of the ATLAS experiment so far was the discovery of the Higgs boson in 2012. As early as the 1960s, the theoretical phycisitst Peter Higgs, François Englert and Robert Brouthad proposed the existence of this particle: As a building block of the Standard Model, it gives other elementary particles their mass. For this, Higgs and Englert received the 2013 Nobel Prize.

Since June 2015, the LHC accelerator has been running with a record energy of 13 teraelectronvolts – nearly twice as much as in the years before. With that, the researchers hope to discover "new physics" – that is, particles and effects that do not occur in the Standard Model but which could help to solve the puzzles of the dark matter, the dark energy, and the missing antimatter in the universe.

ATLAS at the MPP

LHC restart delayed

A short circuit that had delayed the relaunch of the Large Hadron Collider has been remedied. Now the LHC is back on track for the initiation of Run 2.

Read more

LHC is ready to start up again

After its first long shutdown for planned maintenance the Large Hadron Collider is ready to start up again.

Read more

LHC's second run starts 2015

CERN announced at the 174th session of the CERN Council on 12 December that the Large Hadron Collider (LHC) is gearing up for its second three-year run. The LHC is the largest and most powerful particle accelerator in the world and the whole…

Read more

ATLAS launches citizen science project "Higgs Hunters"

This week ATLAS launched the citizen science project "Higgs Hunters" in cooperation with Oxford University and New York University. The project gives volunteers the chance to help researchers deal with the huge amount of data that confronts them.

Read more

CERN makes public first data of LHC experiments

On November 24th CERN launched its Open Data Portal where data from real collision events, produced by experiments at the Large Hadron Collider (LHC) will for the first time be made openly available to all. It is expected that these data will be of…

Read more

Higgs Discovery in Guinness Book of Records

The discovery of the Higgs boson isn't like the average record listet in the Guiness Book of Records. Normally achievements listet in the book can be exceeded. Because of its scientific significance the discovery of the 'God Particle' was included in…

Read more

E-mail address: e-mail@mpp.mpg.de
Phone number: +49 89 32354-extension
name function e-mail extension office
Ali, Ali-Dzhan Student alidzhan A.2.23
Barillari, Teresa, Dr. Senior Scientist barilla 369 A.1.41
Bethke, Siegfried, Prof. Dr. Emeritus bethke 381 A.2.05
Bharthuar, Shudhashil, Dr. Postdoc shudhash 462 A.1.39
Britzger, Daniel, Dr. Postdoc britzger 453 A.2.28
Buchin, Daniel PhD Student dbuchin 376 A.2.21
Cieri, Davide, Dr. Senior Scientist dcieri 226 A.2.10
Costa, Davide Student costadav 240 A.2.15
Cuppini, Elena PhD Student cuppini 376 A.2.21
Delle Fratte, Cesare Senior Scientist cdf 518 A.1.77
Düerkop, Paul Student dueerkop 462 A.1.39
Fallavollita, Francesco, Ph.D. Postdoc fallavol 256 A.3.01
Greco, Matteo, Ph.D. Postdoc greco 511 A.3.03
Grewe, Simon PhD Student grewe 358 A.2.19
Griniushin, Viktor Student griniush 503 A.2.15
Hanser, Elias Student hansere 503 A.2.15
Hessler, Johannes PhD Student jhessler 453 A.2.28
Kado, Marumi, Prof. Dr. Director kado 382 A.2.45
Kiryunin, Andrey, Ph.D. Senior Scientist kiryunin 286 A.0.91
Kluth, Stefan, PD Dr. Senior Scientist skluth 468 A.2.05
Kortner, Oliver, PD Dr. Senior Scientist kortner 240 A.2.12
Kortner, Sandra, Dr. Senior Scientist sandra 288 A.2.14
Kroha, Hubert, Prof. Dr. Senior Scientist kroha 435 A.2.29
Leis, Ulrich Engineering leis 550 A.1.67
Li, Changqiao, Ph.D. Postdoc changqia 265 A.2.30
Maly, Pavel, Ph.D. Engineering pmaly 385 B.2.FL2
Meier, Nick Student meiernic 240 A.2.15
Menke, Sven, Dr. Senior Scientist menke 410 A.1.37
Nisius, Richard, PD Dr. Senior Scientist nisius 474 A.1.43
Park, Tae Hyoun, Ph.D. Postdoc taehyoun 559 A.2.23
Proto, Giorgia, Dr. Postdoc proto 559 A.3.01
Reed, Alice PhD Student reed 220 A.2.19
Richter, Robert, Dr. Senior Scientist richterr 358 A.1.15
Schacht, Peter, Dr. Emeritus pys 228 A.1.15
Schielke, Anja Secretary schielke 299 A.2.47
Schmidt, Elia PhD Student elia 552 A.2.17
Soyk, Daniel Engineering soyk 374 B.2.FL2
Stonjek, Stefan, Dr. Senior Scientist stonjek 296 A.2.26
Tabriz, Meisam, Dr. IT tabriz 603 A.1.77
Toler, Andrew Student tolera 503 A.2.15
Verbytskyi, Andrii, Dr. Senior Scientist andriish 454 A.2.31
Voevodina, Elena, Dr. Postdoc voevodin 559 A.2.23
Wenke, Nina PhD Student wenke 767 A.2.19
Zhou, Fan Student fanzhou 503 A.2.15
Zimmermann, Jörg Engineering joergzim 446 B.2.35

Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC
ATLAS Collaboration (Georges Aad (Freiburg U.) et al.). Jul 2012. 29 pp.
Published in Phys.Lett. B716 (2012) 1-29
arXiv:1207.7214
DOI: 10.1016/j.physletb.2012.08.020
   
The ATLAS Experiment at the CERN Large Hadron Collider
ATLAS Collaboration (G. Aad (Marseille, CPPM) et al.). 2008. 437 pp.
JINST 3 (2008) S08003
DOI: 10.1088/1748-0221/3/08/S08003
   
Measurements of the Higgs boson production and decay rates and coupling
strengths using pp collision data at √s=7 and 8 TeV in the ATLAS experiment
ATLAS Collaboration (Georges Aad (Marseille, CPPM) et al.). Jul 16, 2015. 64 pp.
Eur.Phys.J. C76 (2016) no.1
arXiv:1507.04548 [hep-ex]
DOI: 10.1140/epjc/s10052-015-3769-y

Measurement of the top quark mass in the tt¯→ lepton+jets
and tt¯→ dilepton  channels using √s=7 TeV ATLAS data
ATLAS Collaboration (Georges Aad (Marseille, CPPM) et al.). Mar 18, 2015. 35 pp.
Published in Eur.Phys.J. C75 (2015) no.7, 330
arXiv:1503.05427
DOI: 10.1140/epjc/s10052-015-3544-0
   
Search for the electroweak production of supersymmetric particles in √s=8 TeV pp
collisions with the ATLAS detector
ATLAS Collaboration (Georges Aad (Marseille, CPPM) et al.). Sep 23, 2015. 61 pp.
Published in Phys.Rev. D93 (2016) no.5, 052002
arXiv:1509.07152 [hep-ex]
DOI: 10.1103/PhysRevD.93.052002