Testaufbau des Experiments mit Sapphirplatten. Künftig sollen 80 Scheiben aus Lanthanalaluminat den Nachweis der Axion-Photon-Umwandlung ermöglichen. (Foto: B. Wankerl/MPP)

MADMAX: Max-Planck-Institut für Physik steigt in Axionforschung ein

Das Max-Planck-Institut für Physik (MPP) erschließt ein neues Forschungsfeld. Mit einem Workshop am 21. und 22. November 2016 begannen die Aktivitäten für ein innovatives Axion-Experiment. Axionen sind bislang rein hypothetische Teilchen. Ihr Nachweis könnte zwei grundlegende Probleme in der Teilchenphysik lösen: Woraus Dunkle Materie besteht und warum die CP-Verletzung bei der starken Wechselwirkung bisher nicht direkt beobachtet werden konnte.

Mit dem "MADMAX" (Magnetized Dielectric Mirror Axion Experiment) genannten Vorhaben engagiert sich das MPP künftig in der Axion-Forschung. Die bislang nur theoretisch vorhergesagten Axionen sind schwer zu fassen: Zum einen sind sie ungefähr 10 Milliarden Mal leichter als Elektronen. Zum anderen wechselwirken sie nur extrem schwach mit anderen Materieteilchen und hinterlassen daher kaum Spuren.

In einem sehr starken Magnetfeld könnten Axionen mit Lichtteilchen (Photonen) reagieren und damit nachweisbar gemacht werden. Auf dieser Grundannahme basiert das neue Detektorkonzept, das Wissenschaftler am MPP gemeinsam mit anderen Forschungseinrichtungen entwickeln und testen wollen. Das Kick-off-Meeting fand am 21. und 22. November am MPP statt.

Fokus auf Axionen, die nach der Inflation entstanden sind

Für die Entstehung von Axionen gibt es zwei wohl motivierte Szenarien: Die Teilchen könnten sich noch vor der Inflation, der rasanten Ausdehnung des Universums nach dem Urknall, gebildet haben. Ein zweites Szenario setzt die "Geburt" der Axionen nach der Inflation an.

Das geplante Experiment fokussiert sich auf den Nachweis von Axionen des nach-inflationären Szenarios. Die Masse dieser Axionen taxieren die Wissenschaftler auf 40 bis 400 Mikroelektronenvolt. Diese Annahme wird auch von einer kürzlich in Nature veröffentlichten Studie gestützt. Die Wellenlänge der Photonen liegt für diesen Fall im Mikrowellenbereich des elektromagnetischen Spektrums, ihre Frequenz bei 10 bis 100 Gigahertz.

Die Umwandlung von Axionen in Photonen ist ein seltener Vorgang; zudem muss sich die Axion-Photon-Ausbeute zuverlässig von anderen Lichtteilchen im elektromagnetischen Spektrum unterscheiden lassen.

Das Experiment ist dreiteilig angelegt und besteht aus

  • einem röhrenförmigen, 10 Tesla starken Magneten, in dessen Feld die Axion-Photonen-Reaktion stattfinden soll,
  • einem Modul mit 80 halbtransparenten Scheiben aus Lanthanalaluminat –Durchmesser bis zu 1 Meter – in dem Photonen erzeugt, „konstruktiv“ überlagert und damit leichter messbar werden,
  • einem Detektor zum Nachweis der Photonen.

Nachweis von einem Photon pro Sekunde

In diesem System könnten an den Oberflächen der Scheiben Axionen in Photonen verwandelt werden. Diese überlagern sich bei richtigem Plattenabstand zu einem stärkeren Signal; zugleich können die Photonen das System ungehindert in Richtung Detektor verlassen.

Auf diese Weise, so die Hoffnung der Physiker, könnte sich ein Photon pro Sekunde mit genau definierter Wellenlänge erzeugen lassen. Um den gesamten Massebereich zwischen 40 und 400 Mikroelektronenvolt zu vermessen, müsste man dann allerdings mehrere Jahre veranschlagen.

Als eigentliches Nachweisgerät soll ein Instrument zum Einsatz kommen, das ähnlich aufgebaut ist wie ein Radioteleskop, allerdings um ein Vielfaches kleiner. Der mit flüssigem Helium auf circa -270 Grad Celsius gekühlte Detektor empfängt das eintreffende Mikrowellensignal, das verstärkt und dann aufgezeichnet wird.

Für den Bau und die Inbetriebnahme des Magneten wird das MPP eine Designstudie in Auftrag gegen. Mit ersten Ergebnissen rechnen die MPP-Wissenschaftler Mitte 2018.

MADMAX gehört zu den Projekten, die innerhalb des neu bewilligten Sonderforschungsbereichs (SFB) „Neutrinos und Dunkle Materie in der Astro- und Teilchenphysik (NDM)“ der Deutschen Forschungsgemeinschaft (DFG) gefördert werden. Sprecherin des SFB ist Elisa Resconi, Professorin für Experimentalphysik an der Technischen Universität München.

Kontakt:
Dr. Béla Majorovits

Max-Planck-Institut für Physik
+49 89 32354-262